深入理解无监督学习与K-means聚类算法:原理与实践

一、无监督学习概述

无监督学习(Unsupervised Learning)是机器学习的重要分支之一,与有监督学习不同,它不需要预先标记的训练数据。在无监督学习中,计算机仅根据样本的特征或样本间的相关性,从数据中自动发现隐藏的模式或结构。

核心特点

  1. 仅使用特征矩阵X,不需要标签y

  2. 目标是发现数据中的内在结构和规律

  3. 适用于探索性数据分析

典型应用场景

  • 客户细分

  • 异常检测

  • 特征提取

  • 数据降维

二、聚类算法基础

聚类算法是无监督学习中最具代表性的算法之一。其核心思想是将数据集中的样本划分为若干个组(称为"簇"),使得:

  1. 同一簇内的样本相似度高(簇内差异小)

  2. 不同簇间的样本相似度低(簇外差异大)

与分类算法的区别

特性聚类算法分类算法
学习类型无监督有监督
输入数据只有特征,无标签有特征和标签
目标发现数据的自然分组学习从特征到标签的映射
典型应用客户细分、文档聚类垃圾邮件检测、图像识别

聚类与分类的区别

三、K-means算法详解

3.1 算法核心概念

  1. 代次数)

3.3 算法特点

簇(Cluster):由相似数据点组成的集合,K-means将N个样本划分为K个互不相交的簇。

质心(Centroid):每个簇的中心点,计算为该簇中所有数据点的均值。在二维空间中,质心的坐标就是该簇所有点x坐标和y坐标的平均值。

3.2 算法流程

K-means算法通过迭代优化来最小化簇内平方和(即每个点到其所属簇质心的距离平方和),具体步骤如下:

  1. 初始化:随机选择K个数据点作为初始质心

  2. 分配步骤:将每个数据点分配到最近的质心所在的簇

  3. 更新步骤:重新计算每个簇的质心(取簇内所有点的平均值)

  4. 迭代:重复分配和更新步骤,直到满足停止条件(通常为质心不再显著变化或达到最大迭代次数)

3.3 算法特点

优点

  • 原理简单,实现容易

  • 计算效率高,适合大规模数据集

  • 对于球形簇结构的数据效果很好

局限性

  • 需要预先指定K值

  • 对初始质心选择敏感

  • 对噪声和离群点敏感

  • 只能发现球形簇,对复杂形状的簇效果不佳

四、Scikit-learn中的K-means实现

Scikit-learn提供了高效且易用的KMeans类,下面详细介绍其API和使用方法。

4.1 KMeans类主要参数

class sklearn.cluster.KMeans(
    n_clusters=8,          # 要形成的簇数,即K值
    init='k-means++',      # 初始化方法:'k-means++'(智能初始化)或'random'
    n_init=10,             # 使用不同质心种子运行算法的次数
    max_iter=300,          # 单次运行的最大迭代次数
    tol=1e-4,              # 收敛阈值
    random_state=None      # 随机数生成器种子
)

4.2 重要属性

cluster_centers_ : array, [n_clusters, n_features]
    # 聚类中心的坐标
    
labels_ : array, [n_samples,]
    # 每个样本所属的簇标签
    
inertia_ : float
    # 样本到最近聚类中心的平方和总和
    
n_iter_ : int
    # 实际运行的迭代次数

4.3 完整示例代码

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
import numpy as np

# 1. 生成模拟数据
# 生成1000个二维样本,分为4个簇
X, _ = make_blobs(n_samples=1000, centers=4, random_state=42)

# 2. 可视化原始数据
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], s=10)
plt.title("Original Data")

# 3. 创建KMeans模型并拟合数据
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X)

# 4. 获取聚类结果
centroids = kmeans.cluster_centers_
labels = kmeans.labels_

# 5. 可视化聚类结果
plt.subplot(1, 2, 2)
# 用不同颜色绘制各个簇
for i in range(4):
    cluster_points = X[labels == i]
    plt.scatter(cluster_points[:, 0], cluster_points[:, 1], s=10, label=f'Cluster {i}')
# 绘制质心
plt.scatter(centroids[:, 0], centroids[:, 1], s=100, marker='*', c='black', label='Centroids')
plt.title("Clustered Data")
plt.legend()

plt.tight_layout()
plt.show()

# 6. 输出聚类信息
print(f"Cluster centers:\n{centroids}")
print(f"Inertia (sum of squared distances): {kmeans.inertia_:.2f}")

4.4 代码解析

  1. 数据生成:使用make_blobs生成1000个二维样本点,分为4个自然簇。这个函数非常适合创建聚类算法的测试数据。

  2. 模型初始化:创建KMeans对象,设置n_clusters=4表示我们希望将数据分为4个簇。

  3. 模型训练:调用fit方法训练模型,算法会自动找到最优的簇划分。

  4. 结果可视化:使用不同颜色展示各个簇,并用星号标记出每个簇的质心位置。

  5. 结果分析:打印出簇中心坐标和inertia值(簇内平方和),这个值越小表示聚类效果越好

五、总结

K-means作为最经典的聚类算法之一,因其简单高效而被广泛应用于各个领域。通过本文的介绍,我们了解了:

  1. 无监督学习与聚类算法的基本概念

  2. K-means算法的原理和实现细节

  3. Scikit-learn中KMeans类的使用方法

  4. 实际应用中的技巧和注意事项

虽然K-means有诸多优点,但也存在一些局限性。在实际应用中,我们可能需要尝试其他聚类算法(如DBSCAN、层次聚类等)或对K-means进行改进(如K-means++初始化)以获得更好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值