利用Python的statsmodels 库进行回归分析

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf

sns.set_theme()# 设置风格
%config InlineBackend.figure_format = 'retina' # 让图片更清晰
df = pd.read_excel('/content/data.xlsx')# 导入数据
print(df)
sns.regplot(x='x', y='y',data=df)
plt.savefig("回归.png", dpi = 600, bbox_inches = 'tight')
plt.show()
results = smf.ols(formula='y ~ x',data=df).fit()
print(results.summary())

OLS Regression Results

Dep. Variable:

y

R-squared:

0.771

Model:

OLS

Adj. R-squared:

0.758

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值