一、背景
态势感知在网络安全中至关重要,作为监测预警和信息通报的基础平台,它能实现对整体安全形势的事前预警与事后溯源。在网络安全态势感知平台通过持续监测网络流量,有效掌握公司自身风险特征,致力于构建坚实可靠的网络安全体系。该平台利用智能化分析提升安全监测服务的效率,并通过自动化响应实现安全事件的高效闭环处理。在重大活动或事件中,平台可对企业突发情况进行准确研判,并对重点部位和关键场景及时预警,从而保障公司关键信息基础设施的安全可靠运行。
二、态势感知的部署思路
态势感知平台采用分布式架构部署网络探针于关键节点,利用多存储服务器及位置服务分散数据负荷与定位信息。平台提供双重入侵防护:一方面旁路采集、分析并存储全量网络流量,通过威胁感知系统实时检测已知威胁;另一方面,基于强大的全流量存储能力,支持深度回溯分析(如数据包特征识别、异常行为检测),提升对潜伏高级未知攻击的发现能力。
平台通过对海量日志数据的多维关联分析与自动化挖掘,实现对受害目标和攻击源的精准定位,并结合威胁情报预判安全风险。最终,借助安全编排与自动化响应(SOAR)技术,平台能够快速实施 IP 封禁并协同处置安全事件。
三、态势感知监测方式
态势感知平台通过三重监测策略显著提升了威胁应对能力:
- 扩展云端威胁情报:整合云端数据优化攻击模型,增强威胁感知能力;
- 深度关联告警线索:关联分析多源告警,精准识别并还原攻击链;
- 联动工具闭环处置:协同多种安全工具响应事件,实现高效闭环处置。
四、实战演习
1. 纵深异构防御体系构建
纵深异构防御通过分层部署异构流量探针,实现对攻击路径的全覆盖监测,并利用多系统能力互补实现交叉验证。其实施流程如下:
-
摸排与规划:
演习前全面评估各流量监测产品的性能差异,并梳理现有流量镜像节点的负载分布。基于此,制定异构探针的流量分配方案,解决安全设备丢包、镜像网带宽拥塞等问题。 -
流量优化技术:
采用MAP重定向
、数据去重
及流量过滤
技术,精准分配流量至对应监测系统,避免资源争用。 -
三层防御战线:
-
外到内:覆盖互联网边界攻击检测(如DDoS、端口扫描);
-
内到内:监控安全域间横向渗透(如APT攻击、内网扩散);
-
内到外:阻断内部敏感数据外泄及隐蔽信道通信。
-
2. 暴露面收敛与内网清理
基于流量监测告警,实施攻击面动态收缩:
-
高危暴露面治理:
关闭非必要高危端口(如远程管理端口)、修复弱密码账户、隐藏或加固管理后台入口; -
内网威胁清除:
定位并隔离失陷主机(如矿机、僵尸节点),终止违规外联、数据窃取等恶意行为。
3.全景化数据采集体系
5类核心数据源构成态势感知平台的分析基础:
-
网络日志:防火墙流量记录、反向代理访问日志、DNS查询日志;
-
安全日志:流量监测告警、邮件沙箱拦截记录、蜜罐攻击捕获数据;
-
应用日志:LDAP认证日志、SVN代码操作审计;
-
资产信息:硬件设备指纹、软件版本清单、网络拓扑状态;
-
威胁情报:外部威胁指标(IoC)、攻击者TTPs(战术、技术与过程)。
4.智能监控与告警机制
动态基线监控面板实现数据采集质量保障:
-
基线定义:基于历史数据设定每类日志的收取频率阈值(如防火墙日志≤5秒/条);
-
异常检测:若数据源超时未达(如LDAP日志中断10分钟),面板自动标红并触发告警;
-
多级告警:
-
初级告警:平台界面可视化提示;
-
高级告警:短信/邮件通知运维团队,含异常类型与影响范围。
-
5.核心防御战线强化
5.1.重点系统纵深防护
将四类关键系统纳入特权保护范畴:
系统类型 | 防护措施 | 合规依据 |
---|---|---|
堡垒机 | 强制多因素认证(MFA)、命令级操作审计、会话实时监控 | 等保3.0访问控制 |
域控服务器 | 特权账户行为分析、Kerberos协议加固、异常登录阻断 | NIST零信任框架 |
VPN网关 | 动态口令认证、隧道流量加密(AES-256)、空闲会话自动终止(≤10分钟) | ISO 27017 |
数据交换系统 | 传输内容DLP检测、端到端加密(国密SM4)、API调用鉴权 | 等保3.0数据安全 |
5.2 攻击测试验证闭环
-
红蓝对抗演练:定期模拟攻击行为(如暴力破解VPN、域控提权),验证监测能力;
-
告警联动验证:确保攻击触发三类告警:
-
流量监测(异常端口扫描)→ 网络侧告警;
-
EDR(恶意进程注入)→ 主机侧告警;
-
应用日志(异常账户操作)→ 应用侧告警。
-
6.HW高危攻击实时捕获
基于ATT&CK框架构建动态监测模型,重点检测六类攻击行为:
攻击类型 | 检测逻辑 |
---|---|
0day利用 | 异常行为模式分析(如非常规系统调用链)+ 漏洞特征匹配 |
OA账号爆破 | 高频失败登录关联(源IP、时段、协议)→ 自动触发账户锁定 |
恶意邮件钓鱼 | 附件沙箱动态分析 + 发信域名信誉库比对 |
Webshell上传 | 文件熵值检测 + 签名异常(如免杀特征)→ 联动WAF实时拦截 |
交互异常 | 隐蔽信道识别(DNS隧道/ICMP数据外泄) + 非授权外联行为建模 |
提权行为 | 权限变更日志与进程树异常关联(如普通用户启动SYSTEM进程) |
7. 威胁情报智能决策
构建三层响应机制:
-
高危IP识别:访问资产的IP实时比对威胁情报库(如微步、VirusTotal)
-
分级处置:
-
仅匹配标签→ 加入重点关注清单,行为分析引擎实时监控(如端口扫描)
-
标签+攻击告警→ 自动触发防火墙封禁(API联动)并通知SOC团队
-
-
情报闭环:封禁IP反向注入情报库,增强本地化威胁知识图谱
8.蜜罐溯源与攻击者画像
8.1攻击者行为捕获
部署高交互蜜罐(如Honeyd、T-Pot)模拟真实业务环境,捕获攻击者:
-
攻击链还原:记录攻击者从扫描、漏洞利用到植入后门的全流程操作
-
指纹情报生成:提取攻击工具特征(Cobalt Strike证书)、通信协议、漏洞利用代码
8.2 攻击者画像构建
通过多维数据融合生成威胁档案:
维度 | 分析内容 | 预警价值 |
---|---|---|
身份标签 | 黑客组织归属(APT编号)、暗网ID、工具开发者特征 | 识别定向攻击动机 |
危险等级 | 历史攻击成功率、武器化漏洞等级、基础设施复杂度 | 量化攻击威胁级别 |
攻击轨迹 | 跳板IP路径、驻留时间、横向移动范围 | 预测下一阶段攻击目标 |
地理定位 | IP归属地、活跃时区、语言环境 | 关联地缘政治风险 |