技战法-态势感知攻击检测

一、背景

        态势感知在网络安全中至关重要,作为监测预警和信息通报的基础平台,它能实现对整体安全形势的事前预警与事后溯源。在网络安全态势感知平台通过持续监测网络流量,有效掌握公司自身风险特征,致力于构建坚实可靠的网络安全体系。该平台利用智能化分析提升安全监测服务的效率,并通过自动化响应实现安全事件的高效闭环处理。在重大活动或事件中,平台可对企业突发情况进行准确研判,并对重点部位和关键场景及时预警,从而保障公司关键信息基础设施的安全可靠运行。

 

 二、态势感知的部署思路

          ​态势感知平台采用分布式架构部署网络探针于关键节点,利用多存储服务器及位置服务分散数据负荷与定位信息。平台提供双重入侵防护​:一方面旁路采集、分析并存储全量网络流量,通过威胁感知系统实时检测已知威胁;另一方面,基于强大的全流量存储能力,支持深度回溯分析(如数据包特征识别、异常行为检测),提升对潜伏高级未知攻击的发现能力。

平台通过对海量日志数据的多维关联分析与自动化挖掘,实现对受害目标和攻击源的精准定位,并结合威胁情报预判安全风险。最终,借助安全编排与自动化响应(SOAR)技术,平台能够快速实施 IP 封禁并协同处置安全事件。

 

三、态势感知监测方式 

态势感知平台通过三重监测策略显著提升了威胁应对能力:

  • 扩展云端威胁情报​:整合云端数据优化攻击模型,​增强威胁感知能力
  • 深度关联告警线索​:关联分析多源告警,精准识别并还原攻击链
  • 联动工具闭环处置​:协同多种安全工具响应事件,​实现高效闭环处置

 

四、实战演习 

1. 纵深异构防御体系构建

纵深异构防御通过分层部署异构流量探针,实现对攻击路径的全覆盖监测,并利用多系统能力互补实现交叉验证。其实施流程如下:

  • 摸排与规划​:
    演习前全面评估各流量监测产品的性能差异,并梳理现有流量镜像节点的负载分布。基于此,制定异构探针的流量分配方案,解决安全设备丢包、镜像网带宽拥塞等问题。

  • 流量优化技术​:
    采用 MAP重定向数据去重 及 流量过滤 技术,精准分配流量至对应监测系统,避免资源争用。

  • 三层防御战线​:

    • 外到内​:覆盖互联网边界攻击检测(如DDoS、端口扫描);

    • 内到内​:监控安全域间横向渗透(如APT攻击、内网扩散);

    • 内到外​:阻断内部敏感数据外泄及隐蔽信道通信。

2. 暴露面收敛与内网清理

基于流量监测告警,实施攻击面动态收缩:

  • 高危暴露面治理​:
    关闭非必要高危端口​(如远程管理端口)、修复弱密码账户、隐藏或加固管理后台入口​;

  • 内网威胁清除​:
    定位并隔离失陷主机​(如矿机、僵尸节点),终止违规外联、数据窃取等恶意行为。

3.全景化数据采集体系

5类核心数据源构成态势感知平台的分析基础:

  1. 网络日志​:防火墙流量记录、反向代理访问日志、DNS查询日志;

  2. 安全日志​:流量监测告警、邮件沙箱拦截记录、蜜罐攻击捕获数据;

  3. 应用日志​:LDAP认证日志、SVN代码操作审计;

  4. 资产信息​:硬件设备指纹、软件版本清单、网络拓扑状态;

  5. 威胁情报​:外部威胁指标(IoC)、攻击者TTPs(战术、技术与过程)。

4.智能监控与告警机制

动态基线监控面板实现数据采集质量保障:

  • 基线定义​:基于历史数据设定每类日志的收取频率阈值​(如防火墙日志≤5秒/条);

  • 异常检测​:若数据源超时未达(如LDAP日志中断10分钟),面板自动标红并触发告警;

  • 多级告警​:

    • 初级告警:平台界面可视化提示;

    • 高级告警:短信/邮件通知运维团队,含异常类型与影响范围。

5.核心防御战线强化

​5.1.重点系统纵深防护

将四类关键系统纳入特权保护范畴​:

系统类型防护措施合规依据
堡垒机强制多因素认证(MFA)、命令级操作审计、会话实时监控等保3.0访问控制
域控服务器特权账户行为分析、Kerberos协议加固、异常登录阻断NIST零信任框架
VPN网关动态口令认证、隧道流量加密(AES-256)、空闲会话自动终止(≤10分钟)ISO 27017
数据交换系统传输内容DLP检测、端到端加密(国密SM4)、API调用鉴权等保3.0数据安全

5.​2 攻击测试验证闭环

  • 红蓝对抗演练​:定期模拟攻击行为(如暴力破解VPN、域控提权),验证监测能力;

  • 告警联动验证​:确保攻击触发三类告警:

    • 流量监测(异常端口扫描)→ ​网络侧告警

    • EDR(恶意进程注入)→ ​主机侧告警

    • 应用日志(异常账户操作)→ ​应用侧告警​。

6.HW高危攻击实时捕获

​基于ATT&CK框架构建动态监测模型,重点检测六类攻击行为:

攻击类型检测逻辑
0day利用异常行为模式分析(如非常规系统调用链)+ 漏洞特征匹配
OA账号爆破高频失败登录关联(源IP、时段、协议)→ 自动触发账户锁定
恶意邮件钓鱼附件沙箱动态分析 + 发信域名信誉库比对
Webshell上传文件熵值检测 + 签名异常(如免杀特征)→ 联动WAF实时拦截
交互异常隐蔽信道识别(DNS隧道/ICMP数据外泄) + 非授权外联行为建模
提权行为权限变更日志与进程树异常关联(如普通用户启动SYSTEM进程)

​7. 威胁情报智能决策

构建三层响应机制:

  • 高危IP识别​:访问资产的IP实时比对威胁情报库(如微步、VirusTotal)

  • 分级处置​:

    • 仅匹配标签→ 加入重点关注清单,行为分析引擎实时监控(如端口扫描)

    • 标签+攻击告警→ 自动触发防火墙封禁(API联动)并通知SOC团队

  • 情报闭环​:封禁IP反向注入情报库,增强本地化威胁知识图谱

 8.蜜罐溯源与攻击者画像

8.​1攻击者行为捕获

部署高交互蜜罐(如Honeyd、T-Pot)模拟真实业务环境,捕获攻击者:

  • 攻击链还原​:记录攻击者从扫描、漏洞利用到植入后门的全流程操作

  • 指纹情报生成​:提取攻击工具特征(Cobalt Strike证书)、通信协议、漏洞利用代码

​8.2 攻击者画像构建

​通过多维数据融合生成威胁档案:

维度分析内容预警价值
身份标签黑客组织归属(APT编号)、暗网ID、工具开发者特征识别定向攻击动机
危险等级历史攻击成功率、武器化漏洞等级、基础设施复杂度量化攻击威胁级别
攻击轨迹跳板IP路径、驻留时间、横向移动范围预测下一阶段攻击目标
地理定位IP归属地、活跃时区、语言环境关联地缘政治风险

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值