期刊信息
IJCAI2018(顶会)(北大)
Abstract
本文聚焦的问题:交通预测
现在的问题:①中期和长期的预测任务②忽略了时间和空间上的相关性
本文的贡献:设计了STGCN(时空图卷积网络)处理交通领域的时间序列预测
优点:训练速度快,参数少
特点:①we formulatethe problem on graphs 在图上公式化难题② build the model with complete convolutional structures使用完整的卷积网建立模型
6 Conclusion and Future Work

结论:STGCN 时空图卷积 效果好通过时空卷积块集成图卷积和门控时间卷积
未来:未来,我们将进一步优化网络结构和参数设置。此外,我们提出的框架可以应用于更通用的时空结构化序列预测场景,如社交网络的演化和电子商务系统中的偏好预测等。
5 Related Works
