文献阅读《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Frameworkfor Traffic Forecasting》

本文提出STGCN,一种处理交通领域时间序列预测的时空图卷积网络,解决了中期和长期预测中的时间和空间相关性问题。实验结果显示,STGCN在BJER4和PeMSD7数据集上表现出色,优于传统和深度学习方法。模型的特点在于图上公式化问题和完整的卷积结构,适用于复杂时空结构序列预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期刊信息

IJCAI2018(顶会)(北大)

Abstract

本文聚焦的问题:交通预测

现在的问题:①中期和长期的预测任务②忽略了时间和空间上的相关性

本文的贡献:设计了STGCN(时空图卷积网络)处理交通领域的时间序列预测

优点:训练速度快,参数少

特点:①we formulatethe problem on graphs 在图上公式化难题② build the model with complete convolutional structures使用完整的卷积网建立模型

6 Conclusion and Future Work

结论
STGCN 时空图卷积 效果好
通过时空卷积块集成图卷积和门控时间卷积
未来:
未来,我们将进一步优化网络结构和参数设置。此外,我们提出的框架可以应用于更通用的时空结构化序列预测场景,如社交网络的演化和电子商务系统中的偏好预测等。

5 Related Works

4 Experiments

4.1 Dataset Description

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值