BERT框架


BERT框架,即Bidirectional Encoder Representations from Transformers框架,是一种为自然语言处理(NLP)领域设计的开源机器学习框架。以下是对BERT框架的详细介绍:

一、起源与背景

BERT框架起源于2018年,由Google AI Language的研究人员打造。它是基于Transformer架构的预训练语言模型,在多项NLP任务中取得了显著的性能提升,尤其是在问答、文本分类、命名实体识别等方面。

二、模型架构

BERT模型的整体架构包括输入层、分词器、嵌入层、Transformer编码器和输出层。

  • 输入层:BERT模型的输入是一个文本序列,可以是单个句子或多个句子的组合。输入文本需要经过预处理,包括分词、添加特殊标记等操作。
  • 分词器:BERT模型使用WordPiece分词器对输入文本进行分词。WordPiece分词器将文本切分成一个个词片段(token),同时将未知词(Out-Of-Vocabulary,OOV)拆分为子词。
  • 嵌入层:BERT模型使用一个嵌入层将分词后的词片段映射为实数向量表示。每个词片段都由一个固定长度的向量表示。嵌入层包括单词嵌入、段嵌入和位置嵌入三部分,分别表示输入序列中每个单词的词汇信息、不同句子(在NSP任务中)的区分信息以及单词在序列中的位置信息。
  • Transformer编码器:BERT模型使用多层Transformer编码器进行特征提取。Transformer编码器由多个自注意力机制和前馈神经网络组成,能够捕捉文本中的上下文信息。BERT的双向性意味着它在预测某个单词时,能够同时考虑该单词的上下文信息(即左侧和右侧的单词)。
  • 输出层:BERT模型的输出可以是多种形式,如句子的分类、命名实体的识别或机器翻译等。输出层根据具体任务的要求进行设计,通常包括一个或多个全连接层和激活函数。

三、预训练与微调

BERT框架分为两

### 关于BERT框架的架构图与结构说明 #### BERT的整体架构概述 BERT(Bidirectional Encoder Representations from Transformers)的核心是一个多层双向Transformer编码器,其设计基于Vaswani等人提出的原始Transformer架构[^1]。该模型仅采用了Transformer中的Encoder部分,并未涉及Decoder组件。 以下是BERT的主要组成部分及其功能: --- #### 1. **嵌入层 (Embedding Layer)** 在BERT中,输入序列会被映射到三个主要类型的向量表示,这些向量随后被叠加在一起作为最终的输入表示[^2]: - **Token Embedding**: 将每个单词或子词单元转换为其对应的向量表示。通常通过预定义的词汇表来完成这一过程。 - **Segment Embedding**: 用于区分同一输入中的不同句子片段。例如,在处理两个句子A和B时,会分别为它们分配不同的标记(如0代表句A,1代表句B),以便模型了解两者的边界关系[^3]。 - **Position Embedding**: 提供词语的位置信息。不同于某些其他模型采用固定的正弦/余弦函数生成位置编码,BERT选择了可学习的位置编码方式,允许网络自行调整各个位置上的特征表达[^3]。 --- #### 2. **Transformer Encoder 层** 整个BERT模型由多个堆叠的Transformer Encoder构成。对于基础版本(BERT-Base),共有12个这样的Encoder;而对于更大规模的变体(BERT-Large),则扩展到了24层。每一层都执行自注意力机制(Self-Attention Mechanism) 和前馈神经网络(Feed Forward Neural Network),从而捕捉上下文中丰富的语义关联。 下面是单个Transformer Encoder的工作流程: 1. 自注意力计算:通过对当前时刻与其他所有时刻之间的相互作用建模,提取全局依赖性; 2. 前馈网络变换:进一步增强局部模式识别能力并增加非线性特性。 每经过一层之后都会加入残差连接(residual connection) 并实施标准化操作(layer normalization)[^1]。 --- #### 3. **特殊标志符的作用** 为了支持特定任务需求,比如判断两句话之间是否存在连续性等问题,引入了一些特殊的token: - `[CLS]`: 表示分类(classification) 的起始点, 它在整个句子长度范围内聚合了整体的信息; - `[SEP]`: 分隔不同段落或者单独的一条记录. 当涉及到下游应用时,可以利用`[CLS]`对应隐藏状态来进行预测分析; 而针对跨文档间联系的任务,则需考虑如何有效运用`[SEP]`. --- #### 图形化展示 虽然无法直接提供图片形式的内容,但可以通过文字描述构建一幅清晰的画面: 想象一下一个多级管道系统,其中最上面的是各种各样的自然语言处理(NLP)问题解决方案 – 这些方案依据各自特点定制最后几层参数权重更新策略。往下看去便是共享的基础躯干–即一系列串联起来的标准transformer blocks 。再向下追溯源头处就是刚才提到过的三类embeddings混合而成初始信号源。 如果想要更直观的感受的话,建议查阅相关资料获取实际绘制出来的拓扑结构图表[^4]. --- ### 总结 综上所述,Bert作为一个强大的预训练语言模型,凭借独特的三层embedding组合以及深层stacked transformer encoders实现了卓越的效果表现力. ```python # 示例代码演示简单的bert embedding初始化逻辑 import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "[CLS] Who was Jim Henson ? [SEP]" tokens = tokenizer.tokenize(text) input_ids = tokenizer.convert_tokens_to_ids(tokens) outputs = model(torch.tensor([input_ids])) last_hidden_states = outputs.last_hidden_state ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值