- 博客(9)
- 收藏
- 关注
原创 机器学习-主成分分析(PCA)方法-人脸识别
这种降维的方法不仅可以减少数据的维度,提高算法的计算效率,同时也能保留大部分原始数据的特征,有助于提高识别的准确性。变换矩阵W的选择将决定映射后的新特征空间,而PCA的目标是找到最佳的W,使得映射后的特征空间Y能够最大程度地保留原始数据的信息。提取最显著特征:PCA算法能够将原始数据映射到一个新的低维空间,新空间的特征向量是按照重要性递减的顺序排列的,因此可以提取出最显著的特征,有助于更好地表示和区分人脸特征。根据特征值的大小,选择最大的k个特征值对应的特征向量作为变换矩阵W的列向量,得到W。
2025-06-05 19:55:37
739
原创 机器学习-支持向量机(SVM)算法
核函数的选择对SVM分类器的性能和泛化能力有着显著影响,通过正确选择和调整核函数,我们可以更好地适应不同类型的数据分布。3.内存利用率高:SMO算法只需要存储一部分的训练样本和其对应的参数,而不需要存储全部的训练数据,因此在处理大规模数据时,占用的内存较少。4.精度较高:SMO算法对于复杂的非线性问题有较好的表现,并且通过调整参数和核函数的选择,可以得到更好的分类结果。在寻找最大间隔超平面的过程中,SVM找到了支持向量,即离超平面最近的那些样本点,它们决定了最终超平面的位置。
2025-05-22 16:40:19
1970
原创 机器学习-logistics算法
通过对数据集的准备、特征工程、模型训练和评估,可以应用Logistic回归算法于实际问题中,并取得良好的分类效果。与线性回归不同,Logistic回归输出的是一个概率值,用于表示样本属于某一类的可能性。它基于logistic函数,将输入特征的线性组合转换为一个在0到1之间的概率值。其中的一个重要算法是Logistic回归算法,它在分类问题中具有广泛的应用。通过迭代的方式,不断调整参数,直到达到损失函数的最小值。模型对正确分类的样本损失趋近于0,对错误分类的样本施加极高的惩罚(对数放大误差)。
2025-05-16 20:15:08
948
原创 机器学习-朴素贝叶斯分类算法
还被用于推荐系统,根据用户行为数据提供个性化推荐,以及在图像识别中对物体进行分类,尽管其假设特征独立这一条件在实际中往往不完全成立,但其简单高效的特性使其在许多场景下仍然表现出色,为各领域提供了有效的解决方案。它通过训练样本计算各类别的先验概率及特征的条件概率,分类时依据贝叶斯公式求得后验概率并依此判断类别,算法简单高效,对小规模数据表现良好,适合文本分类、垃圾邮件过滤等多分类任务,但其“特征独立”假设在实际中往往难以完全满足。在类别 c k 下,所有特征 X (j) 的条件概率的乘积。
2025-05-03 19:09:40
2047
原创 机器学习-决策树的实现
在计算的过程中,我们会计算条件下每个分支的归一化信息熵,即用每个分支在该属性中出现的概率,来乘以该分支的信息熵。Gain(D,a)中 D 是当前结点包含的所有结果(来自父节点某一分支), a 是为划分这些结果所选的属性,Di 则是属性a下不同的分支所包含的结果。常用的特征选择指标有信息增益、信息增益比、基尼指数等,用于评估特征的重要性和划分能力,选择最佳的特征进行划分。(4)层数越多,叶结点越多,分的越细致,对训练数据分的也越深,越容易过拟合,导致对测试数据预测时反而效果差,泛化能力差。
2025-04-20 17:23:37
1001
原创 机器学习--实现ROC,PR曲线
在机器学习中,ROC曲线和PR曲线是评估二分类模型性能的重要工具:ROC曲线通过绘制真正例率(TPR)和假正例率(FPR)反映模型对正负类的整体区分能力,其AUC-ROC值越接近1表明模型性能越好,适用于类别均衡的场景;ROC曲线以假阳性率为横轴,真阳性率为纵轴,同样通过改变分类阈值得到一系列点连接而成,越接近左上角表示模型性能越优,适用于评估分类器的整体性能,尤其在类别平衡的数据集中表现较好。两者在样本平衡的情况下表现相似,但在实际应用中,应根据具体的数据集和评估需求,选择合适的曲线来评估模型的性能。
2025-03-30 12:54:08
923
原创 K近邻算法的实现
K近邻算法的简单性也使得它成为一种常用的分类和回归方法之一,通过计算样本之间的相似度,K近邻算法可以对新样本进行分类或回归预测。其核心思想是:给定一个新实例,通过计算它与训练集中每个实例的距离,找出距离最近的K个邻居,然后根据这些邻居的类别(分类任务)或值(回归任务)来预测新实例的输出。在K近邻算法中,k值的选定是一个重要的参数,它表示用于预测新样本的最近邻居的数量。而对于较大的数据集,选择较大的k值可能更合适,以充分利用更多的邻居信息。4.:选择K值:选择K的值,即选择离未知样本距离最近的K个样本。
2025-03-19 19:19:54
924
原创 超详细arduino 入门案例:流水灯实验
本次实验旨在通过按键按钮控制流水灯,帮助学生理解物联网系统中硬件与软件的交互原理,掌握输入设备(按键)与输出设备(LED灯)的信号控制方法,学习基本的电路设计和编程逻辑,包括按键的工作原理、LED灯的控制方法、限流电阻的作用、Arduino引脚的功能设置、按键去抖动技术以及流水灯的控制逻辑,同时培养学生的电路连接、代码编写和问题解决能力,为进一步学习物联网安全和复杂系统设计奠定基础。通过读取按键状态(按下或松开),控制LED灯的点亮顺序和时间间隔,实现流水灯的动态效果。松开按键时,流水灯停止。
2025-03-02 15:01:47
2689
原创 机器学习相关软件的安装与环境配置
通过本博客,我们了解了如何安装和配置机器学习所需的软件和环境,。机器学习提供了许多强大的工具和技术,它们可以帮助我们从数据中发现模式、做出预测并自动化决策。机器学习是一门快速发展的领域,它提供了许多强大的工具和技术,可以帮助我们从数据中发现模式、做出预测并自动化决策。成功安装会显示Anaconda的版本号,这里anaconda就安装完成了。系统平台中安装和使用,下载的时候找到对应的点击即可。新建环境变量【根据自己安装的盘,选择对应的盘】机器学习相关软件的安装与环境配置。
2025-02-28 12:49:19
441
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人