命名实体识别:利用Python完成中文实体识别

369 篇文章 ¥49.90 ¥99.00
本文介绍了如何使用Python结合TensorFlow实现基于DNN的中文命名实体识别。通过处理人民日报标注数据集,利用Bi-LSTM-CRF模型进行建模,并采用BERT tokenizer进行中文分词。文章涵盖了数据准备、模型构建、训练和测试的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命名实体识别:利用Python完成中文实体识别

命名实体识别(Named Entity Recognition,简称NER)是自然语言处理中的一项重要任务,它的主要目的是从文本中识别出具有特定意义的实体,例如人名、地名、组织机构名称等。

在本文中,我们将介绍如何使用Python完成基于DNN模型的中文命名实体识别。

  1. 数据集准备

首先,我们需要准备一个中文命名实体识别的数据集。这里我们使用的是人民日报标注数据集。

数据集共包含4个文件,分别是train.txt、dev.txt、test.txt和tag.dict。其中,train.txt和dev.txt用于训练和验证模型,test.txt用于测试模型的性能,tag.dict则是标签与ID之间的映射关系。

  1. 模型构建

接下来,我们可以开始构建模型了。这里我们采用了TensorFlow框架和Bi-LSTM-CRF模型。代码如下:

import tensorflow as tf
from tensorflow.keras.layers import LSTM, Embedding, Dense, TimeDistributed, Dropout, Bidirectional
from keras_contrib.layers import CRF

# 定义模型
class BiLSTM_CRF_Model(tf.keras.Model):
    def __init__(self, vocab_size, num_tags, embedding_dim, hidden_units):
        supe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值