背景意义
随着全球农业生产的现代化进程加快,病害监测与管理在保障作物产量和质量方面变得愈发重要。西红柿作为一种重要的经济作物,其病害的及时检测与处理直接影响到农民的经济收益和食品安全。近年来,随着计算机视觉技术的迅猛发展,基于深度学习的图像处理方法逐渐成为农业病害检测的研究热点。尤其是YOLO(You Only Look Once)系列模型,以其高效的实时检测能力和较高的准确率,成为了病害识别领域的重要工具。
本研究旨在基于改进的YOLOv11模型,构建一个针对西红柿叶片病害的图像分割系统。该系统将利用一个包含4700张图像的多类别数据集,涵盖包括叶斑病、霜霉病、早期锈病等在内的12种病害类型。通过对这些图像的实例分割处理,系统能够精准地识别和定位病害区域,为农民提供科学的决策依据。数据集的多样性和丰富性使得模型在训练过程中能够更好地适应不同的病害特征,从而提高检测的准确性和鲁棒性。
此外,病害检测的自动化和智能化不仅能够减少人工巡查的时间和成本,还能在早期阶段及时发现病害,降低病害蔓延的风险。这对于提升农业生产效率、减少农药使用、保护生态环境具有重要的现实意义。因此,基于改进YOLOv11的西红柿叶片病害检测图像分割系统的研究,不仅推动了计算机视觉技术在农业领域的应用,也为实现精准农业提供了新的思路和方法。通过该系统的实施,能够有效提升西红柿病害管理的智能化水平,为农业可持续发展贡献力量。
图片效果
数据集信息
本项目数据集信息介绍。本项目旨在改进YOLOv11的西红柿叶片病害检测图像分割系统,因此所使用的数据集专注于作物监测,尤其是与豆类和草莓、番茄等作物相关的病害。该数据集包含12个类别,涵盖了多种作物的健康状态及其常见病害,具体类别包括:豆类的角叶斑病、健康状态及锈病;草莓的角叶斑病、果腐病、花朵枯萎病、灰霉病、以及叶片的白粉病;番茄的叶霉病、早期锈病和蜘蛛螨。这些类别的选择不仅反映了当前农业生产中面临的主要病害问题,也为作物健康监测提供了多样化的样本。
数据集中的图像均经过精心挑选和标注,确保其在不同生长阶段和不同环境条件下的代表性。这些图像将用于训练深度学习模型,以提高病害检测的准确性和效率。通过使用这些多样化的样本,模型能够学习到不同病害的特征,从而在实际应用中更好地识别和分类作物病害,帮助农民及时采取防治措施,减少损失。
此外,数据集的设计考虑到了实际农业生产中的复杂性,包含了多种光照、角度和背景条件下的图像,以增强模型的鲁棒性和适应性。通过这样的数据集构建,我们期望能够推动作物监测技术的发展,为农业智能化提供有力支持。
核心代码
以下是经过简化和注释的核心代码部分,主要集中在 Detect_DyHead
类及其相关方法。这个类是 YOLOv8 检测模型的核心部分,负责生成检测头的输出。
import torch
import torch.nn as nn
import math
class Detect_DyHead(nn.Module):
"""YOLOv8 检测头,使用动态头进行目标检测。"""
def __init__(self, nc=80, hidc=256, block_num=2, ch=()):
"""
初始化检测头。
参数:
nc (int): 类别数量
hidc (int): 隐藏层通道数
block_num (int): 动态头块的数量
ch (tuple): 输入通道数
"""
super().__init__()
self.nc = nc # 类别数量
self.nl = len(ch) # 检测层数量
self.reg_max = 16 # DFL 通道数
self.no = nc + self.reg_max * 4 # 每个锚点的输出数量
self.stride = torch.zeros(self.nl) # 在构建时计算的步幅
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # 通道数
# 定义卷积层
self.conv = nn.ModuleList(nn.Sequential(Conv(x, hidc, 1)) for x in ch)
self.dyhead = nn.Sequential(*[DyHeadBlock(hidc) for _ in range(block_num)]) # 动态头块
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(hidc, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for _ in ch
)
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(hidc, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() # DFL层
def forward(self, x):
"""前向传播,返回预测的边界框和类别概率。"""
for i in range(self.nl):
x[i] = self.conv[i](x[i]) # 通过卷积层处理输入
x = self.dyhead(x) # 通过动态头处理特征
shape = x[0].shape # 获取输出形状
for i in range(self.nl):
# 将 cv2 和 cv3 的输出拼接
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training:
return x # 如果在训练模式下,返回处理后的特征
else:
# 动态锚点生成
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) # 拼接所有输出
# 分割边界框和类别
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides # 解码边界框
y = torch.cat((dbox, cls.sigmoid()), 1) # 返回边界框和类别概率
return y
def bias_init(self):
"""初始化检测头的偏置,警告:需要步幅可用。"""
for a, b, s in zip(self.cv2, self.cv3, self.stride):
a[-1].bias.data[:] = 1.0 # 边界框偏置
b[-1].bias.data[:self.nc] = math.log(5 / self.nc / (640 / s) ** 2) # 类别偏置
代码注释说明:
- 类的定义:
Detect_DyHead
类是 YOLOv8 的检测头,负责处理输入特征并生成检测结果。 - 初始化方法:构造函数中定义了网络的结构,包括卷积层、动态头块和输出层。
- 前向传播方法:
forward
方法处理输入特征,通过卷积层和动态头块生成特征,最终返回预测的边界框和类别概率。 - 偏置初始化:
bias_init
方法用于初始化模型的偏置,确保模型在训练开始时具有合理的初始值。
这个简化版本的代码保留了核心逻辑,并提供了详细的中文注释,便于理解每个部分的功能。
这个文件 head.py
定义了多个用于目标检测的神经网络模型,主要是基于 YOLOv8 的架构。文件中包含了多个类,每个类代表一种不同的检测头(Detect Head),这些检测头用于处理输入特征图并输出检测结果,包括边界框和类别概率。
首先,文件导入了一些必要的库,包括 torch
和 torch.nn
,这些库是构建深度学习模型的基础。接着,文件定义了一些模块和函数,例如卷积层、深度可分离卷积等,这些都是构建检测头的基础组件。
接下来,定义了多个检测头类,如 Detect_DyHead
、Detect_AFPN_P345
、Detect_Efficient
等。每个类都继承自 nn.Module
,并实现了初始化方法和前向传播方法。
在初始化方法中,类会根据输入参数设置类的属性,如类别数量、通道数、输出数量等,并构建所需的卷积层和其他模块。例如,Detect_DyHead
类中使用了动态头(DyHead)来处理特征图,Detect_AFPN_P345
类则使用了自适应特征金字塔网络(AFPN)来增强特征提取。
前向传播方法 forward
是每个类的核心,负责接收输入特征图,经过一系列的卷积和处理后,输出预测的边界框和类别概率。在这个过程中,模型会根据训练或推理模式进行不同的处理,比如在训练模式下返回中间结果,而在推理模式下则返回最终的预测结果。
此外,文件中还定义了一些辅助方法,如 bias_init
用于初始化偏置,decode_bboxes
用于解码边界框等。这些方法在模型训练和推理过程中起到重要作用。
文件最后部分包含了一些针对特定任务的检测头类,例如 Detect_LSCD
、Detect_LADH
等,这些类在基础检测头的基础上进行了扩展,增加了对特定类型数据的支持,比如轻量级共享卷积、旋转边界框等。
总的来说,head.py
文件提供了一系列灵活且高效的检测头实现,适用于不同的目标检测任务,能够处理多种输入特征图并输出相应的检测结果。
10.4 lsknet.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
from functools import partial
class Mlp(nn.Module):
""" 多层感知机(MLP)模块 """
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features # 输出特征数
hidden_features = hidden_features or in_features # 隐藏层特征数
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) # 第一层卷积
self.dwconv = DWConv(hidden_features) # 深度卷积
self.act = act_layer() # 激活函数
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) # 第二层卷积
self.drop = nn.Dropout(drop) # Dropout层
def forward(self, x):
x = self.fc1(x) # 第一层卷积
x = self.dwconv(x) # 深度卷积
x = self.act(x) # 激活
x = self.drop(x) # Dropout
x = self.fc2(x) # 第二层卷积
x = self.drop(x) # Dropout
return x
class Attention(nn.Module):
""" 注意力模块 """
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2d(d_model, d_model, 1) # 线性投影
self.activation = nn.GELU() # 激活函数
self.spatial_gating_unit = LSKblock(d_model) # 空间门控单元
self.proj_2 = nn.Conv2d(d_model, d_model, 1) # 线性投影
def forward(self, x):
shortcut = x.clone() # 保留输入作为shortcut
x = self.proj_1(x) # 线性投影
x = self.activation(x) # 激活
x = self.spatial_gating_unit(x) # 空间门控
x = self.proj_2(x) # 线性投影
x = x + shortcut # 残差连接
return x
class Block(nn.Module):
""" 基本块,包含注意力和MLP """
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU):
super().__init__()
self.norm1 = nn.BatchNorm2d(dim) # 第一个归一化层
self.norm2 = nn.BatchNorm2d(dim) # 第二个归一化层
self.attn = Attention(dim) # 注意力模块
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) # MLP模块
def forward(self, x):
x = x + self.attn(self.norm1(x)) # 添加注意力输出
x = x + self.mlp(self.norm2(x)) # 添加MLP输出
return x
class LSKNet(nn.Module):
""" LSKNet模型 """
def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512], depths=[3, 4, 6, 3]):
super().__init__()
self.num_stages = len(depths) # 模型阶段数
for i in range(self.num_stages):
# 初始化重叠的Patch嵌入
patch_embed = OverlapPatchEmbed(img_size=img_size // (2 ** i), in_chans=in_chans if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i])
# 初始化块
block = nn.ModuleList([Block(dim=embed_dims[i]) for _ in range(depths[i])])
setattr(self, f"patch_embed{i + 1}", patch_embed) # 保存Patch嵌入
setattr(self, f"block{i + 1}", block) # 保存块
def forward(self, x):
outs = []
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
x, H, W = patch_embed(x) # Patch嵌入
for blk in block:
x = blk(x) # 通过块
outs.append(x) # 保存输出
return outs
class DWConv(nn.Module):
""" 深度卷积模块 """
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) # 深度卷积
def forward(self, x):
return self.dwconv(x) # 进行深度卷积
def lsknet_t(weights=''):
""" 创建LSKNet_t模型并加载权重 """
model = LSKNet(embed_dims=[32, 64, 160, 256], depths=[3, 3, 5, 2])
if weights:
model.load_state_dict(torch.load(weights)['state_dict']) # 加载权重
return model
if __name__ == '__main__':
model = lsknet_t('lsk_t_backbone-2ef8a593.pth') # 实例化模型
inputs = torch.randn((1, 3, 640, 640)) # 创建输入
for i in model(inputs):
print(i.size()) # 输出每个阶段的输出尺寸
代码核心部分说明:
- Mlp: 定义了一个多层感知机模块,包含两个卷积层和一个深度卷积层,使用GELU激活函数和Dropout。
- Attention: 实现了一个注意力机制,包含两个线性投影和一个空间门控单元。
- Block: 定义了一个基本块,包含归一化、注意力模块和MLP模块。
- LSKNet: 主要的网络结构,包含多个阶段,每个阶段由Patch嵌入和多个Block组成。
- DWConv: 实现了深度卷积,用于特征提取。
- lsknet_t: 用于创建LSKNet_t模型并加载预训练权重的函数。
这些部分构成了LSKNet模型的核心结构和功能。
这个程序文件 lsknet.py
实现了一个名为 LSKNet 的深度学习模型,主要用于图像处理任务。代码中使用了 PyTorch 框架,定义了多个类和函数来构建和管理模型的各个部分。
首先,文件导入了必要的库,包括 PyTorch 的核心库和一些模块,以及用于处理图像的函数。接着,定义了几个主要的类:
-
Mlp 类:这是一个多层感知机模块,包含两个卷积层和一个深度卷积层(DWConv)。它接收输入特征,通过全连接层和激活函数(GELU)进行处理,并在最后应用 dropout 以防止过拟合。
-
LSKblock 类:这是 LSKNet 的核心模块之一,包含多个卷积层和注意力机制。它通过深度卷积和空间卷积提取特征,并使用 squeeze-and-excitation 机制来生成注意力权重,最终将注意力应用于输入特征。
-
Attention 类:实现了一个注意力机制,使用了 LSKblock 来处理输入数据,并通过残差连接增强模型的表达能力。
-
Block 类:这是 LSKNet 的基本构建块,结合了归一化层、注意力机制和多层感知机。它通过层级缩放参数来调整每个块的输出。
-
OverlapPatchEmbed 类:用于将输入图像转换为补丁嵌入,包含卷积层和归一化层,输出嵌入特征及其高宽信息。
-
LSKNet 类:这是整个模型的主要类,定义了模型的结构,包括多个阶段的嵌入、块和归一化层。它通过循环创建不同阶段的模块,并在前向传播中处理输入数据,最终输出多个阶段的特征。
-
DWConv 类:实现了深度卷积操作,用于特征提取。
此外,文件还定义了几个辅助函数:
-
update_weight 函数:用于更新模型的权重,将预训练模型的权重加载到当前模型中,确保权重的形状匹配。
-
lsknet_t 和 lsknet_s 函数:分别用于创建 LSKNet 的两个不同版本(小型和大型),并可选择性地加载预训练权重。
最后,在 __main__
块中,创建了一个 LSKNet 模型实例,并生成了一个随机输入以测试模型的输出尺寸。
总体来说,这个文件实现了一个复杂的图像处理模型,结合了多种深度学习技术,如卷积、注意力机制和多层感知机,适用于各种计算机视觉任务。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻