一种智能自适应正交小波滤波器学习与优化算法(Python)

算法流程图

完整算法流程图说明

该流程图展示了"智能自适应正交小波滤波器学习与优化算法"的完整工作流程,分为三大阶段:

1. 准备阶段:

首先生成稀疏小波系数作为训练基础,通过随机分布创建90%为零值的系数矩阵

使用目标小波基将系数重构为时域信号,形成多样化的训练样本集

初始化小波滤波器系统:随机生成低通滤波器系数,通过正交补关系自动构造高通滤波器

对初始滤波器进行归一化处理,确保满足基本正交约束条件

2. 训练核心循环:

对每个训练信号执行小波分解:填充信号至合适长度,应用当前滤波器进行DWT变换,获得近似系数和细节系数

执行小波重建:组合系数并应用逆变换IDWT,生成重建信号

计算综合损失函数:评估重建信号质量(相对MSE),分析系数稀疏性(L1+L2正则),验证正交约束(6项数学条件)

数值梯度计算:通过微小扰动滤波器系数观察损失变化,分别确定低通和高通滤波器的梯度方向

更新滤波器系数:应用梯度裁剪防止数值不稳定,执行梯度下降更新

强制执行正交约束:归一化能量,固定求和值,保持正交关系

动态训练控制:监控损失变化,当连续多轮未改善时衰减学习率,满足早停条件时终止循环

持续保存当前最佳滤波器参数,确保最终获得最优解

3. 评估与输出阶段:

使用测试信号验证系统:应用学习到的小波进行信号重建,计算重建MSE评估精度

可视化对比:绘制原始信号与重建信号的时域对比图

小波函数分析:生成并绘制学习到的小波函数,与目标小波进行形态学比较

系数分布研究:分析小波系数的稀疏性和能量分布特征

正交约束验证:数值验证滤波器是否满足关键正交条件

输出最终系统:包括优化后的滤波器系数、小波函数对象和完整的变换API

整个流程形成闭环优化系统,能够针对特定信号特征自动学习最优小波表示,在保证数学正交性的同时,最大化重建质量和系数稀疏性,为专业信号处理提供自适应解决方案。

class dwt:
    def __init__(self, filter_size, h=None, g=None):
        # 增加滤波器长度校验
        if filter_size % 2 != 0:
            filter_size += 1  # 确保偶数长度
            print(f"警告: 滤波器长度调整为偶数 {filter_size}")

        self.filter_size = filter_size

        if h is None:
            # 使用更合理的初始化
            self.h = np.random.normal(0, 0.1, filter_size)
            # 归一化初始滤波器
            self.h /= np.linalg.norm(self.h)
        else:
            self.h = h

        if g is None:
            # 使用正交补初始化g
            self.g = np.array([(-1)**k * self.h[-k-1] for k in range(len(self.h))])
        else:
            self.g = g

        # 确保滤波器满足基本约束
        self._enforce_constraints()

    def _enforce_constraints(self):
        """确保基本正交约束"""
        # 单位能量约束
        self.h /= np.linalg.norm(self.h)
        # ∑h_i = √2
        self.h *= math.sqrt(2) / np.sum(self.h)
        # ∑g_i = 0 (已通过构造保证)

    def compute(self, input_):
        # 处理信号长度不足的情况
        if len(input_) < len(self.h):
            input_ = np.pad(input_, (0, len(self.h) - len(input_)), 'constant')

        filter_bank = [self.h, self.g, np.flip(self.h), np.flip(self.g)]
        my_wavelet = pywt.Wavelet(name="my_wavelet", filter_bank=filter_bank)

        try:
            ca, cd = pywt.dwt(input_, wavelet=my_wavelet)
            # 返回系数数组而不是元组
            return ca, cd, np.concatenate([cd, ca])
        except ValueError as e:
            # 处理小波变换错误
            print(f"小波变换错误: {e}")
            # 返回零系数
            coeff_len = (len(input_) + len(self.h) - 1) // 2
            return np.zeros(coeff_len), np.zeros(coeff_len), np.zeros(2*coeff_len)

    def inverse(self):
        return idwt(self)

    def update_weights(self, hg, gg, lr=0.001):
        # 应用梯度裁剪防止爆炸
        hg = np.clip(hg, -1.0, 1.0)
        gg = np.clip(gg, -1.0, 1.0)

        self.h = self.h - lr * hg
        self.g = self.g - lr * gg

        # 更新后强制执行约束
        self._enforce_constraints()

完整代码通过知乎学术咨询获得(哥廷根数学学派):

工学博士,担任《Mechanical System and Signal Processing》审稿专家,《中国电机工程学报》,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值