Baidu Apollo EM Planner

本文介绍了基于百度Apollo平台的实时运动规划系统,该系统采用EM型迭代算法,旨在解决自动驾驶的安全性、舒适性和可扩展性。系统采用多车道策略处理变道场景,路径速度迭代算法优化路径和速度,结合交通规则和决策,确保安全行驶。通过实例研究展示了规划器如何在复杂环境中生成平滑轨迹,且算法已在实际车辆上进行了大量测试验证其效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Haoyang Fan1,†, Fan Zhu2,†, Changchun Liu, Liangliang Zhang, Li Zhuang, Dong Li, Weicheng Zhu, Jiangtao Hu, Hongye Li, Qi Kong3,∗


摘要-在这篇稿件中,我们介绍了一个基于百度Apollo(开源)自动驾驶平台的实时运动规划系统。所开发的系统旨在解决工业4级运动规划问题,同时兼顾安全性、舒适性和可扩展性。该系统以分层的方式涵盖了多车道和单车道自动驾驶:(1)系统的顶层是一个多车道策略,通过比较并行计算的车道水平轨迹来处理变道场景。(2)在车道级轨迹生成器内,基于Frenet框架迭代求解路径和速度优化。(3)针对路径和速度优化问题,将动态规划和基于样条的二次规划相结合,构造了一个可扩展、易于调整的框架,同时处理交通规则、障碍物决策和平滑性。该规划器可扩展到高速公路和低速城市驾驶场景。我们还通过场景说明和道路测试结果对算法进行了验证。

       自2017年9月发布Apollo v1.5以来,本文描述的系统已部署到数十辆百度 Apollo 自动驾驶汽车上。截至2018年5月16日,该系统已在各种城市场景下进行了3,380小时和约68,000公里(42,253英里)的闭环自动驾驶测试。

      本手稿中描述的算法可在https://github.com/ApolloAuto/apollp/tree/master/modules/planning中获得。

  • 一、引言

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值