每个连续的卷积层将感受野大小增加 K - 1。对于 L 层,感受野大小是 1 + L * (K - 1)。这样会有一个问题就是:对于大图像,为了使每个输出“看到”整个图像,我们需要许多层。怎么解决?增加步长。
卷积层:总结
假设输入为 W1 x H1 x C
卷积层需要 4 个超参数:
- 滤波器数量 K
- 滤波器大小 F
- 步幅 S
- 零填充 P
这将产生一个输出 W2 x H2 x K,其中:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1
参数数量:F²CK 和 K 个偏置。
池化层:总结
假设输入为 W1 x H1 x C
池化层需要 2 个超参数:
- 空间范围 F
- 步幅 S
这将产生一个输出 W2 x H2 x C,其中:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1
参数数量:0