cs231n:Lecture 5: Image Classification with CNNsHistory

本文讨论了卷积层中感受野的计算以及如何处理大图像的问题,介绍了卷积层和池化层的超参数,包括滤波器数量、大小、步幅和零填充。重点强调了如何通过调整这些参数来优化模型的参数数量和计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每个连续的卷积层将感受野大小增加 K - 1。对于 L 层,感受野大小是 1 + L * (K - 1)。这样会有一个问题就是:对于大图像,为了使每个输出“看到”整个图像,我们需要许多层。怎么解决?增加步长。

卷积层:总结
假设输入为 W1 x H1 x C
卷积层需要 4 个超参数:
- 滤波器数量 K
- 滤波器大小 F
- 步幅 S
- 零填充 P
这将产生一个输出 W2 x H2 x K,其中:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1
参数数量:F²CK 和 K 个偏置。

池化层:总结
假设输入为 W1 x H1 x C
池化层需要 2 个超参数:
- 空间范围 F
- 步幅 S
这将产生一个输出 W2 x H2 x C,其中:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1
参数数量:0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值