DWT-离散小波变换(通俗理解版

是什么

🎵 想象分析一段音乐

你有一段音乐,你不只想知道它“有哪些音符(频率)”,还想知道“这些音符在什么时间出现”。

  • 傅里叶变换:就像把整段音乐倒进一个机器里,告诉你里面包含了哪些频率,但没法告诉你这些声音是在哪一秒发生的
  • 小波变换:更聪明,它用一个“小探测器(小波)”在音乐上一段一段扫过去
    • 扫到哪一段,就分析那一段有哪些频率;
    • 扫过整个音乐,就能知道什么时候出现了什么声音

📌 离散小波变换(DWT)是啥?

小波变换在数学上是“连续的”(能量太大)。为了让电脑能算,我们把需要分析的“时间”和“尺度”,按照一定的规律取成一系列固定的离散点

  • 简单来说:把“连续扫描”变成“有规律的跳着扫描”
  • 有了这个“跳表”后,就能编写快速算法进行计算,所以叫离散小波变换(DWT)

怎么做

用两个卷积核(滤波器):

名称作用类似
低通滤波器(L)只留整体趋势(慢变化)模糊
高通滤波器(H)只留细节突变(快变化)边缘检测

步骤如下:

  1. 原始信号 x[n]
  2. L 做卷积 → 再每隔一个取一个样(下采样) → 得到“逼近系数 A”
    → 代表低频(整体)
  3. H 做卷积 → 下采样 → 得到“细节系数 D”
    → 代表高频(波动细节)
  4. 可以把 A 当作新的输入,重复步骤 2、3 → 再分解 → 多层结构

📦 举个数值例子(1 层 DWT)

假设:

  • 原始序列 x = [4, 6, 10, 12, 14, 8, 6, 2]
  • 低通滤波器 L = [1/√2, 1/√2]
  • 高通 H = [1/√2, -1/√2]

卷积+下采样结果你会得到:

  • A(逼近) = [7.07, 15.56, 15.56, 5.66]
  • D(细节) = [-1.41, -1.41, 4.24, 2.83]

可以继续把 A 再拿去分解!

⏬ 什么是下采样(downsampling)?

下采样就是:扔掉一半的数据,只保留隔一个取一个

比如:
原结果是 [a, b, c, d, e, f]
下采样(取偶数位)后变成 [a, c, e][b, d, f]

👀 这可以让数据变成原来的一半 —— DWT 中就是这么减小数据量的。

image-20250805152119197

🔁 到了 离散小波变换(DWT) 中:

我们不再让 a、b 取“任意连续值”,而是固定地取一系列离散位置

  • a = 2 − j a=2^{−j} a=2j(常见选择)
  • b= k ∗ 2 − j k*2^{−j} k2j

其中 j,k 都是整数

这样:

  • 尺度 a → 变成了只取 1、1/2、1/4、1/8 …
    → 就是 第1层、第2层、第3层… 分解
  • 平移 b → 按照“下采样”之后固定地跳动
    → 对应“第 k 个小波系数”

🌊 更直观理解:

  • 第一层(j=1):a=1/2 → 小波比较窄 → 捕捉高频细节
  • 第二层(j=2):a=1/4 → 小波更宽 → 捕捉较长时间范围的变化
  • b 决定“小波”是放在信号第几个位置去看的 → 就是我们得到的 D[j,k]和 A[j,k] 中的 k

📌 总结一句话:

在 DWT 中,a(尺度)变成了分解的层数,表示观察“多粗”的特征”; b(平移)变成了层内系数的序号,表示观察的是信号上的第几个位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值