2025新年伊始,今年将是“Agentic系统之年”,“2025将会出现真正Agent”,时不我待,请签收属于你的AI Agents技术栈综述。
理解AI Agents生态
尽管我们看到了大量关于Agent栈和市场的分类图,但我们往往不同意它们的分类方式,发现它们很少反映开发者实际使用的。在过去几个月中,随着在内存、工具使用、安全执行和部署方面的进步,Agent软件生态系统有了显著的发展,因此,能够真正落地的“Agent技术栈(agent stack)”应该是怎样尼?
AI Agents技术栈,被组织成三个关键层:Agent托管/服务、Agent框架,以及LLM模型和存储。
从LLM到LLM Agent
在2022年和2023年,我们看到了LLM框架和SDK的兴起,比如LangChain(2022年10月发布)和LlamaIndex(2022年11月发布)。同时,我们也看到了几个“标准”平台的建立,这些平台通过API消费LLMs以及自部署LLM推理(vLLM和Ollama)。
在2024年,我们看到了对AI“Agent”的兴趣急剧转变,更广泛地说,是对复合系统的兴趣。尽管“Agent”这个术语在AI中已经存在了几十年(特别是在强化学习中),但在后ChatGPT时代,“Agent”已经成为一个松散定义的术语,通常指的是被赋予输出动作(工具调用)并在自治设置中运行的LLM。从LLM到Agent所需的工具使用、自治执行和内存的结合,促使一个新的Agent栈发展。
Agent技术栈的独特之处
与基本的LLM聊天机器人相比,Agent是一个更复杂的工程挑战,因为它们需要状态管理(保留消息/事件历史记录,存储长期记忆,执行多个LLM调用在一个Agent循环中)和工具执行(安全执行LLM输出的动作并返回结果)。
因此,AI Agent栈与标准的LLM栈看起来非常不同。让我们从模型服务层开始,分解今天的AI