这种题型的核心难点在于高效因子分解和连续段检测的逻辑处理,需要同时掌握数论和基础算法技巧。在这道题中,我们运用贪心策略(通过双重循环),在因子分解的过程中直接验证连续序列的有效性,避免了存储所有因子的开销。这种设计在保证正确性的前提下,显著提升了效率,尤其适用于大数值的场景。
题目:
输入样例:
630
输出样例:
1
3
2
5*6*7
【算法思路】
本题的目标是找出一个正整数 N
的最长连续因子序列,并输出其长度和该序列。可以采用以下步骤实现:
- 确定连续因子的起始位置:从 2 开始遍历到 √N,因为如果连续因子序列的起始数字大于 √N,那么这个序列最多只有一个因子,不可能构成连续因子序列。
- 尝试不同长度的连续因子序列:对于每个起始数字
i
,不断尝试增加连续因子的长度,计算这些连续因子的乘积product
,并检查product
是否能整除N
。 - 记录最长连续因子序列:在遍历过程中,记录最长连续因子序列的长度
maxLength
和起始数字start
。 - 输出结果:根据记录的
maxLength
和start
,输出最长连续因子的个数和最小的连续因子序列。
建议在解题时:
- 先进行因数分解,再分析连续序列的可能长度
- 枚举时从最小质因数开始,避免重复计算
- 注意处理特殊情况(如 n 本身是质数的情况
【代码示例】
#include<iostream>
#include<cmath>
using namespace std;
int main(){
int N;
cin>>N;
int maxLength = 0;//最长连续因子个数
int start = 0;//最长连续因子序列的起始数字
//遍历可能的起始数字
for(int i=2;i<=sqrt(N);i++){
int product=1;//可能的因子乘积
int j;
//尝试不同长度的连续因子序列
for(j=i;;++j){
product *= j;
if(N%product != 0) break;
if(j-i+1 > maxLength){
maxLength=j-i+1;//更新最长个数
start=i;//记录当前最长序列开始的长度
}
}
}
//如果没有找到连续因子序列,最长连续因子就是N本身
if(maxLength == 0){
maxLength=1;
start=N;
}
//输出结果
cout<<maxLength<<endl;
for(int i=0;i<maxLength;++i){
if(i>0) cout<<"*";
cout<<start+i;
}
cout<<endl;
return 0;
}
☆贪心策略的具体运用
1. 贪心策略的核心思想
贪心策略指在每一步选择中都采取当前最优的选择,从而期望导致全局最优解。在本题中,贪心策略体现在以下两个关键步骤:
(1)起始点遍历的贪心选择
- 外层循环从最小的可能起始点
i=2
开始,逐步递增到sqrt(N)
。 - 逻辑:如果存在多个最长连续因子序列,优先找到起始点最小的序列(因为外层循环按升序遍历
i
)。
(2)连续序列的贪心延长
- 内层循环从
i
开始,尽可能延长连续因子序列的长度。 - 逻辑:对于每个起始点
i
,只要乘积能整除N
,就继续增加序列长度,直到无法整除为止。