机器学习笔记:门控循环单元的建立

目录

介绍

结构

模型原理

重置门与更新门

候选隐状态

输出隐状态

模型实现

引入数据

初始化参数

定义模型

训练与预测

简洁实现GRU

思考


介绍

门控循环单元(Gated Recurrent Unit,简称GRU)是循环神经网络一种较为复杂的构成形式,其用途也是处理时序数据,相比具有单隐藏状态的RNN,GRU具有忘记的能力,可以忘记无用的数据。

结构

与传统RNN相比,GRU的结构引入了的概念,比RNN复杂许多,不过可以看出,其输入仍然是X_t和上一时间步隐状态H_{t-1},输出仍然是本时间步隐状态H_t。区别在于“细胞”内部结构,RNN只需要将H和X分别处理,之后结合在一起,激活函数激活后将其输出即可。而GRU内部处理十分复杂。

模型原理

我们以处理的顺序来依次讲解各个组成部分的模型原理。

重置门与更新门

首先介绍重置门(reset gate)R_t更新门(update gate)Z_t。 我们把它们设计成(0,1)区间中的向量。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。后面还会再提到两个门的具体作用。

重置门和更新门的计算公式如下所示,由于使用sigmoid函数,R_tZ_t的值在(0,1)区间内。

R_t= \sigma (X_t \cdot W_{xr} + H_{t-1} \cdot W_{hr}+b_r)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值