目录
介绍
门控循环单元(Gated Recurrent Unit,简称GRU)是循环神经网络一种较为复杂的构成形式,其用途也是处理时序数据,相比具有单隐藏状态的RNN,GRU具有忘记的能力,可以忘记无用的数据。
结构
与传统RNN相比,GRU的结构引入了门的概念,比RNN复杂许多,不过可以看出,其输入仍然是和上一时间步隐状态
,输出仍然是本时间步隐状态
。区别在于“细胞”内部结构,RNN只需要将H和X分别处理,之后结合在一起,激活函数激活后将其输出即可。而GRU内部处理十分复杂。
模型原理
我们以处理的顺序来依次讲解各个组成部分的模型原理。
重置门与更新门
首先介绍重置门(reset gate)和更新门(update gate)
。 我们把它们设计成(0,1)区间中的向量。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。后面还会再提到两个门的具体作用。
重置门和更新门的计算公式如下所示,由于使用sigmoid函数,和
的值在(0,1)区间内。