所有运行结果均在编译器VS2022,Debug,x86的环境下得出
一、什么是递归
- 递归中的递就是递推的意思,归就是回归的意思。
- 递归的过程就像是剥洋葱一样。把⼀个⼤型复杂问题层层转化为⼀个与原问题相似,但规模较⼩的⼦问题来求解;直到⼦问题不能再被拆分,递归就结束了。
- 递归的思考方式是把⼤事化⼩的过程。
二、递归的限制条件
- 递归存在限制条件,当满⾜这个限制条件的时候,递归便不再继续。
- 每次递归调⽤之后越来越接近这个限制条件。
三、递归的举例
1.举例1:求n的阶乘
- 计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。
1.1题目分析
首先,我们知道n的阶乘的公式:n! = n ∗ (n − 1)!
- 举例:
- 4! = 4 * 3 * 2 * 1
- 3! = 3 * 2 * 1
- 所以:4! = 4 * 3!
这样的思路就是把⼀个较⼤的问题,转换为⼀个与原问题相似,但规模较⼩的问题来求解的。
稍微分析⼀下,当 n<=1 的时候,n的阶乘是1,其余n的阶乘都是可以通过上述公式计算。
则n的阶乘的递归公式如下:
1.2代码实现
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:
int Fact(int n)
{
if (n == 0)
return 1;
else
return n * Fact(n - 1);
}
将代码进行测试:
#include<stdio.h>
#include"Fact.h"
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
测试结果如下:
2.举例2:顺序打印⼀个整数的每⼀位
- 输⼊⼀个整数m,打印这个按照顺序打印整数的每⼀位。
- ⽐如:
输⼊:1234 输出:1 2 3 4
输⼊:520 输出:5 2 0
2.1题目分析
这个题⽬,放在我们⾯前,⾸先想到的是,怎么得到这个数的每⼀位呢?
- 如果n是⼀位数,n的每⼀位就是n⾃⼰
- n是超过1位数的话,就得拆分每⼀位
- Print(1234)就可以拆分为两步:
1.Print(1234/10) //打印123的每⼀位
2.printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10) + printf(123%10)
Print(1234)
==>Print(123) + printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束。
2.2代码实现
那我们就可以写出函数Printf,顺序打印n的每一位,假设Printf(n)就是顺序打印n的每一位,那么Printf(n-1)就是顺序打印n-1的每一位,函数如下:
int Printf(int n)
{
if (n > 9)
{
Printf(n / 10);
}
printf("%d ", n % 10);
}
将代码进行测试:
#include<stdio.h>
int Printf(int n)
{
if (n > 9)
{
Printf(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int n = 0;
scanf("%d", &n);
Printf(n);
return 0;
}
测试结果如下: