OpenCV自定义深度学习层实现
深度学习已经成为计算机视觉领域的热门话题,而OpenCV作为一款常用的计算机视觉库,也不断推出新的功能以支持深度学习算法。本文将介绍如何在OpenCV中自定义深度学习层以扩展其功能。
一、概述
OpenCV的dnn模块已经支持了许多流行的深度学习框架,如TensorFlow、Caffe、Darknet等,并且提供了许多现有的层类型(Layer types)。但是在实际应用中,很可能需要使用到一些自定义的层类型,因此支持自定义层类型就显得尤为重要。
OpenCV中支持自定义深度学习层的方式是通过继承cv::dnn::Layer
类并实现必要的方法来实现的。本文将以一个简单的自定义层类型为例进行讲解。
二、自定义层类型
我们将实现一个自定义的层类型MyLayer
,该层类型接收两个输入,并将它们的和输出。具体而言,MyLayer
类需要实现以下方法:
- 构造函数
MyLayer(const cv::dnn::LayerParam