熵权法
概述
**熵权法(Entropy Weight Method,EWM)**是一种客观赋权的方法,原理:指标的变异程度越小,所包含的信息量也越小,其对应的权值应该越低(例如,如果对于所有样本而言,某项指标的值都相同,则该指标无参考价值,即信息量为0,权值应为0)。
如何衡量信息量大小?越不可能发生的事件信息量越多,越有可能发生的事情信息量越少。例如一个全校前几名的尖子生小王考上了清华,大家都觉得天经地义,里面没什么信息量;而如果有一天成绩很差的小张考上了清华,让大家很诧异,这里面包含的信息量就很大了。于是我们可以用概率衡量信息量。
信息量用I表示,概率用p表示,设x表示事件X可能发生的某种情况,我们可以建立I和p的函数关系
I(x)=−ln(p(x)) I(x)=-ln(p(x)) I(x)=−ln(p(x))
下面引入信息熵的概念,设事件X可能发生的情况为x1、x2、...、xnx_1、x_2、...、x_nx1、x2、...、xn
则信息熵被定义为
H(x)=−∑i=1np(xi)ln(p(xi)) H(x)=-\sum_{i=1}^{n}p(x_i)ln(p(x_i)) H(x)=−i=1∑np(xi)ln(p(xi))
在概率论中我们知道离散型随机变量数学期望的定义为E(x)=∑i=1nxip(xi)E(x)=\sum_{i=1}^{n}x_{i}p(x_{i})