在机器学习的复杂体系中,算法模型常常被视为核心驱动力,但真正决定模型上限的,是数据背后的特征工程。正如业界流传的经典论断:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。” 特征工程作为连接原始数据与高性能模型的隐秘基石,通过清洗、转换、筛选等一系列操作,将杂乱无章的原始数据雕琢成模型能够理解的 “语言”。
认识特征工程
特征工程(Feature Engineering)是将原始数据预处理为机器可读格式的过程。它通过转换和选择相关特征来优化机器学习(ML)模型的性能。特征工程的核心在于将原始数据转换为机器学习模型可用的信息。换句话说,特征工程是创建预测模型特征的过程。
特征(Feature),也称为维度(Dimension),是用于生成模型预测的输入变量。由于模型性能在很大程度上依赖于训练时所使用数据的质量,因此特征工程是一个至关重要的预处理技术,旨在为特定的预测任务和模型类型选择最相关的原始训练数据。在医学研究中,特征是承载生物、生理、病理信息的量化指标,例如患者的年龄、血压、基因表达量、CT 图像的像素值等,这些指标构成了机器学习模型的输入变量。特征工程作为连接原始生物数据与临床预测模型的桥梁,其核心目标是通过数据清洗、转换、筛选等操作,为特定的医学任务(如疾病诊断、预后评估、药物反应预测)构建高质量的特征空间。
在构建机器学习