最短编辑距离
题目
给定两个字符串长度为nnn的AAA 和长度为mmm的 BBB,现在要将 AAA 经过若干操作变为 BBB,可进行的操作有:
-
删除——将字符串AAA中的某个字符删除。
-
插入——在字符串 AAA 的某个位置插入某个字符。
-
替换——将字符串 AAA 中的某个字符替换为另一个字符。
现在请你求出,将 AAA 变为 BBB 至少需要进行多少次操作。
// input:
10
AGTCTGACGC
11
AGTAAGTAGGC
// output:
4
题解
以f[i][j]f[i][j]f[i][j]表示在a[]a[]a[]中的前iii个字母变成bbb中前jjj个字母的操作的集合。
对于可进行操作:
- **删除:**说明删前的a[1,i−1]a[1,i-1]a[1,i−1]和b[1,j]b[1,j]b[1,j]相同,即f[i][j]=f[i−1][j]+1f[i][j]=f[i-1][j]+1f[i][j]=f[i−1][j]+1.
- **插入:**说明加前的a[1,i]a[1,i]a[1,i]和b[1,j−1]b[1,j-1]b[1,j−1]相同,即f[i][j]=f[i][j−1]+1f[i][j]=f[i][j-1]+1f[i][j]=f[i][j−1]+1.
- **替换:**说明除了a[i]a[i]a[i]和b[j]b[j]b[j]都一样,即f[i][j]=f[i−1][j−1]+1f[i][j]=f[i-1][j-1]+1f[i][j]=f[i−1][j−1]+1.
- 不动:f[i][j]=f[i−1][j−1]f[i][j]=f[i-1][j-1]f[i][j]=f[i−1][j−1].
最后仅需思考如何初始化:
- 对于初始长度为000的aaa,只能插入,f[0][j]f[0][j]f[0][j].
- 而对于长度为000的bbb,只能删除,f[i][0]f[i][0]f[i][0].
#include<iostream>
#include<cmath>
using namespace std;
int n, m, f[1005][1005];
char a[10005], b[1005];
int main()
{
cin >> n >> a + 1;
cin >> m >> b + 1;
for(int i = 1; i <= n; i ++)
f[i][0] = i;
for(int j = 1; j <= m; j ++)
f[0][j] = j;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1;
f[i][j] = min(f[i - 1][j - 1] + (a[i] != b[j]), f[i][j]);
}
}
cout << f[n][m] << endl;
return 0;
}