判断树,是否同构

给定两棵树 T1​ 和 T2​。如果 T1​ 可以通过若干次左右孩子互换就变成 T2​,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

fig1.jpg

图1

图2

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数 n (≤10),即该树的结点数(此时假设结点从 0 到 n−1 编号);随后 n 行,第 i 行对应编号第 i 个结点,给出该结点中存储的 1 个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出 “-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

栈限制

8192 KB

#include <stdio.h>
#include <stdlib.h>

#define Null -1

typedef int Tree;

struct TreeNode 
{
    char data;
    int left;
    int right;
}T1[10],T2[10];

Tree Build(struct TreeNode T[]) 
{
    int i, n;
    int check[10] = {0};
    char l, r;
    Tree root = Null;
    scanf("%d", &n);
    if (n) 
    {
        for (i = 0; i < n; i++) 
        {
            scanf(" %c %c %c", &T[i].data, &l, &r);
            if (l != '-') 
            {
                T[i].left = l - '0';
                check[T[i].left] = 1;
            }
            else  T[i].left = Null;
            if (r != '-') 
            {
                T[i].right = r - '0';
                check[T[i].right] = 1;
            } 
            else  T[i].right = Null;
        }
        for (i = 0; i < n; i++) 
        {
            if (!check[i]) 
            {
                root = i;
                break;
            }
        }
    }
    return root;
}

int Isomorphic(Tree R1, Tree R2) 
{
    if (R1 == Null && R2 == Null) return 1;
    if (R1 == Null || R2 == Null) return 0;
    if (T1[R1].data != T2[R2].data) return 0;
    if (T1[R1].left == Null && T2[R2].left == Null) return Isomorphic(T1[R1].right, T2[R2].right);
    if ((T1[R1].left != Null && T2[R2].left != Null) && (T1[T1[R1].left].data == T2[T2[R2].left].data)) 
    {
        return Isomorphic(T1[R1].left, T2[R2].left) && Isomorphic(T1[R1].right, T2[R2].right);
    } 
    else 
    {
        return Isomorphic(T1[R1].right, T2[R2].left) && Isomorphic(T1[R1].left, T2[R2].right);
    }
}

int main() 
{
    Tree R1, R2;
    R1 = Build(T1);
    R2 = Build(T2);
    if (Isomorphic(R1, R2)) printf("Yes\n");
    else    printf("No\n");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Esther_prog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值