给定两棵树 T1 和 T2。如果 T1 可以通过若干次左右孩子互换就变成 T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
|
---|
图1 |
|
图2 |
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数 n (≤10),即该树的结点数(此时假设结点从 0 到 n−1 编号);随后 n 行,第 i 行对应编号第 i 个结点,给出该结点中存储的 1 个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出 “-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
栈限制
8192 KB
#include <stdio.h>
#include <stdlib.h>
#define Null -1
typedef int Tree;
struct TreeNode
{
char data;
int left;
int right;
}T1[10],T2[10];
Tree Build(struct TreeNode T[])
{
int i, n;
int check[10] = {0};
char l, r;
Tree root = Null;
scanf("%d", &n);
if (n)
{
for (i = 0; i < n; i++)
{
scanf(" %c %c %c", &T[i].data, &l, &r);
if (l != '-')
{
T[i].left = l - '0';
check[T[i].left] = 1;
}
else T[i].left = Null;
if (r != '-')
{
T[i].right = r - '0';
check[T[i].right] = 1;
}
else T[i].right = Null;
}
for (i = 0; i < n; i++)
{
if (!check[i])
{
root = i;
break;
}
}
}
return root;
}
int Isomorphic(Tree R1, Tree R2)
{
if (R1 == Null && R2 == Null) return 1;
if (R1 == Null || R2 == Null) return 0;
if (T1[R1].data != T2[R2].data) return 0;
if (T1[R1].left == Null && T2[R2].left == Null) return Isomorphic(T1[R1].right, T2[R2].right);
if ((T1[R1].left != Null && T2[R2].left != Null) && (T1[T1[R1].left].data == T2[T2[R2].left].data))
{
return Isomorphic(T1[R1].left, T2[R2].left) && Isomorphic(T1[R1].right, T2[R2].right);
}
else
{
return Isomorphic(T1[R1].right, T2[R2].left) && Isomorphic(T1[R1].left, T2[R2].right);
}
}
int main()
{
Tree R1, R2;
R1 = Build(T1);
R2 = Build(T2);
if (Isomorphic(R1, R2)) printf("Yes\n");
else printf("No\n");
return 0;
}