LeetCode 455 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是满足尽可能多的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。
所以你应该输出 1。
示例 2:输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出 2。
贪心策略:先将饼干和小孩数组按从小到大排序,然后从后向前遍历小孩数组,优先使用尺寸大的饼干满足胃口大的小孩。
代码实现:
class Solution {
public int findContentChildren(int[] g, int[] s) {
if(s.length==0)return 0;
Arrays.sort(g);
Arrays.sort(s);
int i=g.length-1;
int j=s.length-1;
int count=0;
while(i>=0&&j>=0){
if(s[j]>=g[i]){
count++;
j--;
}
i--;
}
return count;
}
}
LeetCode 376 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2
要想删除元素使其达到最大摆动序列,应该删除什么元素呢?
以示例二为例:
局部最优:删除单调坡上的节点,不包括单调坡两端的节点,那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
在计算是否有峰值的时候,遍历下标i,计算a=nums[i]-nums[i-1]和b=nums[i+1]-nums[i],如果a>0&&b<0或a<0&&b>0就说明有峰值需要统计。
但需要注意一下三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
1.上下坡中有平坡:
举个例子:
它的摇摆序列长度是3,也就是我们在删除的时候,要么删除左边的三个2,要么删除右边的三个2。统一规则,删除左边的三个2。
当i指向第一个2时,a>0&&b=0,当i指向最后一个2时,a=0&&b<0。所以当a=0&&b<0时也要记录一个峰值。所以记录峰值的条件应该是:a>=0&&b<0或a<=0&&b>0。
2.数组首尾两端:
假设数组长度为2,但是计算a和b的时候,至少先不要三个数字才能计算,一种方法我们可以直接写死,就是如果数组长度为2且元素不同,直接返回2;如果不写死的话,就要和我们判断的规则结合在一起。
之前在讨论上下坡中有平坡的情况时,我们知道相同数字连续时,a=0,b>0或<0也要记录峰值。
所以我们可以假设,数组最前面还有一个数字,和数组第一个元素数值相同,这样它就有了坡度即a=0。
count初始为1(默认最右面有一个峰值)。
所以经过以上分析,可以写出如下代码:
class Solution {
public int wiggleMaxLength(int[] nums) {
int count=1;
int a=0;
int b=0;
if(nums.length<=1)return nums.length;
if(nums.length==2){
if(nums[0]==nums[1])return 1;
else return 2;
}
for(int i=0;i<nums.length-1;i++){
b=nums[i+1]-nums[i];
if((a>=0&&b<0)||(a<=0&&b>0)){
count++;
}
a=b;
}
return count;
}
}
但是提交了之后,发现还是不对,是因为还有一种情况没有讨论。
3.单调坡中有平坡:
举个例子:(图中的prediff就是我说的a,curdiff就是我说的b)
这种情况,最长波动序列长度是2,但是按照之前的算法算出来的是3,这是因为单调坡的平坡不能算是峰值。
之所以之前的算法不对,是因为我们实时更新了a,但其实我们只需要在坡度摆动变化的时候去更新a,这样a在单调区间有平坡的时候就不会发生变化,造成误判。
所以最终代码为:
class Solution {
public int wiggleMaxLength(int[] nums) {
int count=1;
int a=0;
int b=0;
if(nums.length<=1)return nums.length;
for(int i=0;i<nums.length-1;i++){
b=nums[i+1]-nums[i];
if((a>=0&&b<0)||(a<=0&&b>0)){
count++;
a=b;
}
}
return count;
}
}
LeetCode 53 最大子数组和
题目链接:53. 最大子数组和 - 力扣(LeetCode)
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:输入:nums = [1]
输出:1
示例 3:输入:nums = [5,4,-1,7,8]
输出:23
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素的“连续和”只会越来越小。
全局最优:选取最大“连续和”。
遍历nums,从头开始用count累加,如果count加上nums[i]变为负数,那么count清零;如果没有变为负数,不断更新最大“连续和”。
代码如下:
class Solution {
public int maxSubArray(int[] nums) {
int count=0;
int max=Integer.MIN_VALUE;
for(int i=0;i<nums.length;i++){
count+=nums[i];
if(count>max)max=count;
if(count<=0){
count=0;
}
}
return max;
}
}