理解深度学习的卷积操作

 理解卷积操作

什么是卷积?

卷积(Convolution)是一种数学运算,用于描述两个函数(或信号、图像)之间相互作用的关系。在离散情况下,卷积的数学表达式为:

(f * g)(n) = \sum_{m=-\infty}^{\infty} f(m) \cdot g(n - m)

其中,$f$是输入数据(如图像、信号),$g$ 是卷积核(或滤波器),$n$ 是输出位置索引。
为什么要用卷积?

  • 高效处理高维数据
    图像、视频等高维数据的直接全连接处理计算量巨大。卷积通过局部连接和参数共享降低计算复杂度。

  • 层次化特征学习
    深层卷积神经网络(CNN)通过堆叠卷积层,逐步提取从低级(边缘)到高级(物体部件、整体)的特征。

  • 保留空间结构
    卷积操作保持输入数据的空间或时序关系,适合处理具有局部相关性的数据(如图像像素、时间序列)。

特征提取
卷积通过滑动窗口(卷积核)对输入数据进行局部加权求和,能够捕捉局部特征

在神经网络中,卷积与信号工程学数学表达式类似但并不相同,神经网络中卷积操作是做点积运算。

卷积核的感受野概念

        感受野(Receptive Field)指卷积神经网络(CNN)中某一层特征图上的像素点在原始输入图像上映射的区域大小。感受野反映了特征图中每个单元能够“看到”的输入范围,是理解CNN层次化特征提取的关键概念。

        在深度学习中,对一张图片,经过一系列的卷积池化全连接操作进行特征提取,变成一个机器能够理解的向量。

        左侧图像模拟一个单通道的图像数据(6×6),当我们用右侧的卷积核对其进行卷积操作时,设置步长stride = 1或不设置默认为1,每次对应的格子相乘完之后,卷积核向右移动一格,再次对应相乘得到结果,如下过程简单演示。

二维卷积计算

         卷积核就像一个小窗口,在图像上滑动,每次观察 3x3 大小的区域。在神经网络中,卷积核的参数就是w,神经网络的权重参数!

          为了方便对比演示,将卷积核更改了一下颜色。

          如下图,卷积核从左上角开始进行第一次卷积操作。

          卷积核向右移动一个位置,进行第二次卷积操作。 

填充方式:

        当卷积核在图像上滑动到右边(或其他边界位置)没有数据时,如下图,通常有以下几种处理方式:

1. 零填充(Zero - Padding)

        在原始图像的边界周围填充一定数量的 0。这样,当卷积核滑动到边界时,卷积核覆盖的区域仍然有数据(0乘任何数为0,这样不会影响结果)在 PyTorch 中使用 nn.Conv2d 时,padding 参数可以设置填充的大小,如 padding = 1 就表示在图像四周各填充 1 行 1列,如下图。

2. 复制填充(Replication Padding)

        不是填充 0,而是复制边界上的像素值来填充。例如,如果图像最右边的像素值是 5,那么在右边填充时,填充的像素值都为 5。这种方式可以在一定程度上保留边界的特征信息,避免因填充 0 而可能引入的噪声或特征突变。在一些深度学习框架中,有专门的函数或参数设置来实现复制填充。

3. 不填充(No Padding)

      当卷积核滑动到边界没有数据时,就停止滑动。这种情况下,输出特征图的尺寸会比输入图像小。计算公式为如下(其实就是最基础最重要的那个公式少了2padding)其中 Win 和  Hin 是输入图像的宽和高, K是卷积核的大小,S 是步长。这种方式会丢失边界部分的信息,可能对一些需要完整边界信息的任务产生影响。

      第一个图是最基础的哪个公式。

    若 p=0 ,dilation=1,上述公式可简化为下面的公式:

        下面,模拟一下这个过程。

代码演示: 

import torch
import torch.nn.functional as F


# 定义输入张量 input,它是一个 4x4 的二维矩阵
# 这个矩阵模拟了待卷积处理的图像数据
input = torch.tensor([
    [0, 1, 2, 3],
    [2, 1, 3, 2],
    [0, 1, 3, 0],
    [0, 4, 1, 2],
])

# 定义卷积核张量 kernel,它是一个 3x3 的二维矩阵
# 卷积核用于在输入数据上进行卷积操作,提取特征
kernel = torch.tensor([
    [2, 1, 0],
    [2, 1, 0],
    [1, 0, 2],
])

# 此时的input和kernalshape不符合要求
print(input.shape)

# 为了能将输入数据用于 PyTorch 的二维卷积函数 F.conv2d,需要调整其形状
# F.conv2d 函数要求输入数据的形状为 (batch_size, in_channels, height, width)
# 这里将 input 调整为形状为 (1, 1, 4, 4) 的四维张量,其中 batch_size=1 表示一批只有一个样本,in_channels=1 表示输入通道数为 1
# 即需要在前面增加两个维度。
input = torch.reshape(input, (1, 1, 4, 4))

# 同样,卷积核也需要调整形状以符合 F.conv2d 函数的要求
# 要求卷积核的形状为 (out_channels, in_channels, kernel_height, kernel_width)
# 这里将 kernel 调整为形状为 (1, 1, 3, 3) 的四维张量,out_channels=1 表示输出通道数为 1,如果是图像,则是一个灰度图。
kernel = torch.reshape(kernel, (1, 1, 3, 3))

# 使用 F.conv2d 函数进行二维卷积操作,stride=1 表示卷积核每次移动的步长为 1 个像素
# 卷积操作会在输入数据上滑动卷积核,计算对应位置的乘积和,得到卷积结果
output1 = F.conv2d(input, kernel, stride=1)

# 改变stride,即卷积核每次移动 2 个像素
# 步长的改变会影响卷积结果的大小
output2 = F.conv2d(input, kernel, stride=2)

# 设置padding = 1,对原图形二维矩阵上下左右各填充数字一列,一行数字
output3 = F.conv2d(input,kernel,stride=1,padding=1)


# 打印三种不同情况的结果
print(output1)
print(output2)
print(output3)


输出结果:

        可自己算一算,看看结果是否一致。

        下面进行实际的创建自己的神经网络,并对图像数据进行卷积操作。 

Dilated Convotion(膨胀卷积 空洞卷积)

        膨胀卷积是一种特殊的卷积操作,通过引入膨胀率(dilation rate)在卷积核中插入间隔(空洞)来扩大感受野,同时不增加参数量或计算复杂度。

原始感受野大小为3。

        普通卷积的膨胀率 r=1 ,设置r=2,膨胀率为2后,即卷积核的相邻权重之间会插入 1 个 “空洞”,感受野大小扩大为5。 

  我们这里以0来表示这些空洞,实际上这些0是不存在的,不参与点积运算。

  例如,膨胀率为2时,2×2卷积核的实际覆盖区域为3×3(但仅计算4个非零权重)。

  原始的卷积核

[2, 1],
[2, 1]

  设置 r=2 后,卷积核变为

[2, 0, 1]
[0, 0, 0]
[2, 0, 1]

        你可能会想,为什么不直接增大卷积核的尺寸呢,而要做这种填0操作,前面提到,在神经网络中 ,卷积核中的数字就是参数权重,如果直接增大卷积核的尺寸,无疑会使我们的参数激增。这些卷积核中填充为0的位置会损失对应数据的信息,但能使我们在不增加参数的情况下,扩大感受野。

Transposed Convolution(转置卷积):

        作用:上采样,膨胀卷积是对卷积核进行填充,而转置卷积是对原始图像进行填充。

转置卷积的运算步骤:

        在输入特征图元素间填充s-1行、列0,

        在输入特征图四周填充k-p-1行、列0,

        将卷积核参数上下、左右翻转,

        做正常卷积运算(p=0,s=1)

        比如下图元素间填充s-1=0行,四周填充k-p-1=2行。

          再比如下图元素间填充s-1=1行,四周填充k-p-1=1行。

      原始输入图像经过填充后的图像大小计算如下:

      对于 s=2,p=1,k=3,填充后的图像H和W为(3-1)× 2 - 2×1 + 3 = 5。

二维卷积的实战演示:

代码演示:

import torch
import torchvision
# 从 torchvision 的转换模块中导入 ToTensor 类,用于将图像数据转换为张量
from torchvision.transforms import ToTensor
# 从 torch 的神经网络模块中导入必要的类
from torch.nn import Module, Conv2d
# 从 torch 的数据加载器模块中导入 DataLoader 类,用于批量加载数据
from torch.utils.data import DataLoader
# 从 torch 的可视化工具模块中导入 SummaryWriter 类,用于将训练过程中的数据写入 TensorBoard
from torch.utils.tensorboard import SummaryWriter

# 卷积操作

# 加载 CIFAR-10 数据集
# root 参数指定数据集的存储路径,这里设置为 './dataset',表示在当前目录下的 dataset 文件夹中存储数据集
# train=False 表示加载测试集,CIFAR-10 数据集分为训练集和测试集,这里选择测试集
# transform=ToTensor() 表示将图像数据转换为张量,方便后续的神经网络处理
# download=False 表示如果数据集不存在则不进行下载,需要确保数据集已经存在于指定路径
dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=ToTensor(), download=False)

# 使用 DataLoader 批量加载数据集
# batch_size=64 表示每个批次包含 64 个样本,就像我们把一叠书(数据集)分成一捆一捆的,每捆有 64 本
dataloader = DataLoader(dataset, batch_size=64)

# 定义一个自定义的神经网络模块 zzy,继承自 nn.Module
# nn.Module 是 PyTorch 中所有神经网络模块的基类,就像一个大的工具箱,我们要在这个工具箱的基础上创建自己的小工具
class zzy(Module):
    def __init__(self):
        # 调用父类的构造函数进行初始化,就像我们在制作小工具之前,先把大工具箱里的基本功能准备好
        super(zzy, self).__init__()
        # 定义一个二维卷积层
        # in_channels=3 表示输入图像的通道数为 3(RGB 图像),可以想象成一幅彩色画有红、绿、蓝三个颜色通道
        # out_channels=6 表示输出特征图的通道数为 6,这意味着我们会用 6 个不同的“放大镜”(卷积核)去观察这幅彩色画,得到 6 种不同的观察结果
        # kernel_size=3 表示卷积核的大小为 3x3,卷积核就像一个小窗口,在图像上滑动,每次观察 3x3 大小的区域
        # stride=1 表示卷积核的步长为 1,即每次滑动一个像素,就像我们拿着小窗口一格一格地移动
        # padding=0 表示不进行填充,填充就像是给图像周围加一圈边框,这里不加边框
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        # 前向传播过程,将输入 x 通过卷积层 conv1 进行处理
        # 就像我们把彩色画放进小工具里,经过“放大镜”的观察,得到新的图像特征
        x = self.conv1(x)
        return x

# 创建 zzy 类的一个实例
# 这就像我们根据设计好的小工具图纸,制作出了一个实际可用的小工具
zzy1 = zzy()
# 打印小工具的结构,让我们看看它长什么样
print(zzy1)

# 创建一个 SummaryWriter 对象,指定日志存储路径为 '/logs'
# SummaryWriter 就像一个记录员,会把我们训练过程中的数据记录下来,方便我们后续查看
writer = SummaryWriter('/logs')

# 初始化一个计数器,用于记录当前处理的批次数量
step = 0

# 遍历数据加载器中的每个批次的数据
# 就像我们一捆一捆地处理书,每次处理一捆
for data in dataloader:
    # 从批次数据中解包出图像数据和对应的标签
    # 可以想象成我们从一捆书中挑出了书(图像)和书的编号(标签)
    imgs, targets = data
    # 将图像数据输入到我们创建的神经网络模块中进行处理,得到输出
    # 就像把书放进小工具里进行加工,得到新的结果
    output = zzy1(imgs)
    # 打印输入图像的形状,让我们了解输入数据的格式
    print(imgs.shape)
    # 打印输出特征图的形状,让我们了解经过卷积处理后的数据格式
    print(output.shape)
    # 使用 SummaryWriter 将输入图像写入 TensorBoard,方便我们可视化输入数据
    # 就像记录员把原始的书拍了张照片,存起来供我们查看
    writer.add_images('input', imgs, step)

    # 尝试将输出特征图的形状调整为 (-1, 3, 30, 30),但这里有个问题,torch.reshape 不会改变原张量,需要赋值给原变量
    # 这里的调整是为了让输出特征图能够以图像的形式可视化,就像我们把加工后的结果重新整理成可以展示的样子
    output = torch.reshape(output, (-1, 3, 30, 30))
    # 使用 SummaryWriter 将调整形状后的输出特征图写入 TensorBoard,方便我们可视化处理后的结果
    # 就像记录员把加工后的书也拍了张照片,存起来供我们查看
    writer.add_images('output', output, step)

    # 批次计数器加 1,表示处理完了一个批次
    step += 1

# 关闭 SummaryWriter,就像记录员完成了工作,把本子合上
writer.close()

        此时在终端输入指令 tensorboard --logdir=/logs,启动 TensorBoard 服务后,会在终端输出一个 URL,通常是 http://localhost:6006 。打开你的浏览器,访问该 URL,即可看到 TensorBoard 的界面,如下。

        上方是原图像,下方是经过卷积操作后的图像。

三维卷积

        在深度学习中,通常数据是三维的,为什么使用卷积处理数据而不是全连接呢,在三维数据里,卷积能够大大提升数据处理的效率

时间序列

        卷积不止能够在特征上并行,还能够同时对多张时间序列表单进行处理,假设现在有红、绿、蓝三张时间序列表单,则我们可以一次性扫描掉所有表单的数据 。

补充:

在 PyTorch 中使用 circular 填充进行卷积操作时,输出尺寸不可能大于输入尺寸。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zik----

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值