多次变换/复合变换——固定与相对坐标系的变换
变换在矩阵的表达就是点乘,多次运算也就是做多次点乘。
但要注意,在学习线代时我们知道矩阵的左乘和右乘是不一样的,因此不可交换。
固定坐标系:绕别的固定坐标系旋转
相对坐标系:绕自己的轴旋转
带入具体值后答案显然不一样:
逆变换
上一节我们已经可以求{B}系相对于{A}系的变换了,但为了后续求逆解,我们还需要得到{A}系相对于{B}系的变换
。
求逆右两个思路,一个是按照线代的方式初等变换或求伴随矩阵,但实际上并没有利用好变换的可逆性质——将【{B}系在{A}系的表达】再次表达回{B}系,实际上就完成了逆变换!
那么对于一个齐次变换矩阵,要进行逆变换,就需要分别对 旋转矩阵 和 平移矩阵
求逆,也就是求其在{B}系中的表达。
的逆很好求,就是
---------- Ⅰ式
但是的逆就不是那么好求了
如果没有图,其实并不好理解:
要求的逆,就是求其在{B}系中的表达
,
首先将的方向转化到{B}系中,即
,此时他就在上图①的位置,
接着,将他平移到原来的②的位置,这段距离就是{A}系原点在{B}系的距离
因此得到
显然{B}系的原点映射在{A}系中,再映射回{B}系中就是[0,0,0],于是将右侧移过去
----------Ⅱ式
于是将ⅠⅡ式带入齐次变换矩阵得到:
变换方程
我们描述末端执行器相对于基坐标系的位姿时,往往需要通过多个关节坐标系一路传递回来计算的。这个过程其实就是多次变换/复合变换,仅仅需要将各关节变换矩阵相乘即可。
现在要描述{D}工具坐标系在{U}基坐标系的位姿,已经知道了两条传递路径:{U}<-{A}<-{D} 以及 {U}<-{B}<-{C}<-{D},用复合变换方程写出来
假设我们仅有不知道,就可以利用这个方程解出来,同时左右乘逆就能消去
两侧的变量
于是,
上图的关系链是箭头表示的,也就是说,T都代表着后者相对于前者的变换关系,如果描述时遇到了箭头方向与串联方向相反,则先求出逆再带入计算即可。
比如下例,从{U}<-{B}<-{C}<-{D}<-{A}的串联路径,{D}系相对于{C}系的变换是与串联方向相反的,因此先取逆,再带入方程。
在描述工具坐标系、物理坐标系和基坐标系的关系的时候,常常就会使用复合变换刻画。