因为这节是基于01背包的,下一节是基于完全背包的,所以先来看看两者的区别
完全背包和01背包的区别
完全背包:正序遍历背包容量,背包遍历顺序可以和物品遍历顺序反过来(二维)
01背包:倒序遍历背包容量,不可以(二维)
01背包:dp[i][j]
表示从下标为[0-i]的物品,每个物品只能取一次,放进容量为j的背包,价值总和最大是多少。这就决定了dp[j]是由他的左上方和上两个位置的值决定的。只能选一次,使得它如果选,就不能再选此物品了,就要去上一层。选了之后此物品之后剩的容量能装的最大价值dp[i-1][j-weight[i]]
,所以先要从后往前,因为会用到上一层前方的数据,从前往后的话,会提前覆盖掉要用到的上一层前边的数据。
选:
不选:
完全背包:dp[i][j]
表示从下标为[0-i]的物品,每个物品可以取无限次,放进容量为j的背包,价值总和最大是多少。这就决定了dp[j]是由他的左和上两个位置的值决定的。能无限选,使得它如果选,还可以继续在本层选,选了之后此物品之后剩的容量能装的最大价值dp[i][j-weight[i]]
。所以先要从前往后,因为会用到本层前方的数据,从后往前的话会误用成上一层的前方数据。
选:
不选:
基于当前值所依赖的值,就可以理解为什么01背包二维不能先遍历背包在遍历物品了(这里遍历背包是倒序),而完全背包就都可以
分割等和子集
力扣链接:分割等和子集
题目:给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
思路:
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
可以抽象成01背包,每个元素都是物品,价值和重量都是对应的数字,背包容量是数组元素的总和的一半。
最后题目要求转变为,容量为target的背包的能装的最大价值是否等于target。
转变为01背包就可以模板套路了
这里使用滚动数组将二维数组转变为一维,
- dp【j】代表背包容量为j能装的最大价值
- 递推式
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
容量为j的能装的最大价值为,不装当前物品(索引为i)或者当前物品的价值+装当前物品后背包能装的最大价值,这里使用一维数组,右边的dp[j]属于上一层的最大价值,即为选取物品范围是i-1到0的容量为j的最大价值, - 初始化:背包容量为0时,最大价值为0,其他值因为要使得max(…,…)要及时更新,所以选取最小非负整数选为0。
- 遍历顺序:先便利物品,然后倒序遍历背包容量,(倒叙遍历背包容量,因为dp[j]需要用到上一层的上方和左上方,所以如果从左到右遍历背包容量,会使得左上方的dp值被下一层的覆盖,最终导致出现一个物品被选多次的情况)
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for (int i : nums)
sum += i;
if (sum % 2 == 1)
return false;
int target = sum / 2;
vector<int> dp(target + 1, 0);
for (int i = 0; i < nums.size(); i++)
for (int j = target; j >= nums[i]; j--) //当容量大于等于重量时才更新,一旦背包容量小于了,说明下一层的dp[j]=上一层的dp[j],因为只有不装物品这一种选择,所以直接退出当前循环,左边的dp[j]就不用填了,直接继承上一层的
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
return dp[target] == target;
}
};
最后一块石头II
力扣链接:最后一块石头II
题目:有一堆石头,用整数数组 stones
表示。其中 stones[i]
表示第 i
块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0
。
思路:
解析题意,将数组分为两部分,这两部分的和尽量相近,相近之后可以彼此消耗对方,最后剩下的一块自然就是最小的
与上一题类似,就是在背包容量为sum/2,物品为数组的中选最大价值(最大价值其实只会相遇等于sum/2,因为元素大小既是重量又是价值,但是背包不一定装满),然后最大价值和另外一堆的总和对比,算出最后的重量
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int n = stones.size();
int sum = 0;
for (int i : stones)
sum += i;
int target = sum / 2;
vector<int> dp(target + 1, 0);
for (int i = 0; i < n; i++)
for (int j = target; j >= stones[i]; j--)
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
return sum - dp[target] - dp[target];
}
};
目标和
力扣链接:目标和
题目:给你一个非负整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
思路:
与上两题类似,分成两个组相等的即sum/2,然后一组加target/2,一组减target/2,可以取(sum+target)/2为背包容量,题目可以转化为装满背包容量的有几种方法
-
dp[j]
:即代表装满容量为j的背包有几种方法 -
递推式:举例说明比如 dp[5]
- 当需要装重为1的物品时,dp[5]=dp[4]
- 当需要装重为2的物品时,dp[5]=dp[3]
- 。。。。这样遍历完所有物品。
- 所以
dp[j]+=dp[j-nums[i]]
-
初始化时 dp[0]=1,其他都为0,其他的都建立在dp[0]的基础上
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(target) > sum) return 0; // 此时没有方案
if ((target + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (target + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};
一和零
力扣链接:一和零
题目:给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集 。
思路:
原始零一背包的拔高题
由原来的一个背包,变为了两个背包限制,最大价值变为了最大个数
-
dp[i][j]
:代表i个0和j个1容量的背包最多能装多少个元素 -
递推式:与01背包类似
dp[j]=max(dp[j]+dp[j-weight[i]+value[i]])
此题:dp[i][j]=max(dp[i][j],dp[i-zero][j-one]+1)
-
初始化
dp[0][0]
=0,其他值初始化也为0 -
遍历顺序:相同,先遍历物品(每一个字符串),再倒序遍历背包(背包有两个维度,所以两层)。
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(
m+1, vector<int>(n+1, 0)); // 填充m个0和n个1最多需要多少物品
for (string str : strs) {
// 统计该字符串的0和1的数量
int zeroNum = 0, oneNum = 0;
for (char c : str) {
if (c == '0')
zeroNum++;
else
oneNum++;
}
//填充动规数组
for (int i = m; i >= zeroNum; i--)
for (int j = n; j >= oneNum; j--)
dp[i][j] = max(dp[i - zeroNum][j - oneNum] + 1, dp[i][j]);
}
return dp[m][n];
}
};