一、线性表查找
平均查找长度ASL:
为确定记录在查找表的位置,需和给定值进行比较的 关键字的 个数的期望。
1.顺序查找
①代码
#include <stdio.h>
#include <stdlib.h>
typedef int KeyType;
typedef struct
{
KeyType key;
}ElemType;
typedef struct
{
ElemType *R;
int length;
}SSTable;///顺序查找表
int Search(SSTable ST,KeyType key)
{///从后往前找
for(int i= ST.length;i>=1;i--)
if(ST.R[i].key==key)return i;
return 0;
}
int Search_Seq(SSTable ST;KeyType key)
{///从后往前找,设置监视哨,免去i>=1条件检测步骤
ST.R[0].key=key;
for(i=ST.length;ST.R[i].key!=key;i--);
return i;
}
②性能分析:
p=1/n(查找概率相等) 不同位置元素在查找时比较次数(1+2+3+……+n)
时间复杂度:O(n)
2.折半查找
折半查找过程可用二叉树来描述:树中每一节点对应表中一个记录,但节点值不是记录的 关键字,而是记录在表中的位置序号。把当前查找区间的中间位置作为根,把左子表和右子表 分别作为根的左子树和右子树,由此得到的二叉树称为折半查找的决策树。
折半查找法在查找成功时和给定值进行比较的关键字 个数至多为
(树的深度)
①判断二叉树是折半查找判定树:
查找区间中间位置可通过向下和向上两种方式计算,但是在一棵树中只能使用一种取整方式,根据这种规则在树节点上填上有序数字,判断是否是折半查找判定树。
②性能分析:
层次(比较次数)为h的结点 : 2^(h-1)个, p=1/n
只适用于有序表,且限于顺序存储结构;不适用于数据元素经常变动的线性表
时间复杂度为O(log n )
3.分块查找(称索引顺序查找)
①特点:整体无序,分块有序
②关键:建立“索引表”:每块有一个索引项,包括关键字项(块中值最大的关键字)、指针项(块的第一个记录的位置)。
③步骤:查找待查记录所在的块(顺序 / 折半)、在块中顺序查找
④性能分析:介于顺序查找、折半查找之间
长度为n的表均匀地分成b块,每块含有s个记录,假定表中每个记录的查找概率相等,则每块查找的概率为1/b,块中每个记录的查找 概率为1/s。
1)顺序查找 查找块:
2)折半查找 查找块
⑤优点:
由于块内无序,只要找到该元素对应的块,就可 在该块内进行插入和删除运算,无须进行大量移动。
⑥缺点:
增加一个索引表的存储空间、对初始索引表进行排序运算。
二、树表查找
1.二叉排序树的查找
①性质:左子树<根节点<右子树的值,中序遍历时,得到节点递增的有序序列。
②二叉排序树查找、插入、创建
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
typedef int KeyType;
///二叉排序树的二叉链表存储表示
typedef struct
{
KeyType key;
///InfoType otherinfo;
}ElemType;
typedef struct BSTNode
{
ElemType data;
struct BSTNode *lchild,*rchild;
}BSTNode;
///二叉排序树递归查找
BSTNode*SearchBST(BSTNode*T,KeyType key)
{///在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素
///查找成功,则返回指向该数据元素节点的指针,否则返回空指针
if(T==NULL||key==T->data.key)return T;
else if(key<T->data.key)return SearchBST(T->lchild,key);
else return SearchBST(T->rchild,key);
}
///二叉排序树递归插入
void InsertBST(BSTNode* T,ElemType e)
{
if(T==NULL)
{
BSTNode*newNode=(BSTNode*)malloc(sizeof(BSTNode));
newNode->data=e;
newNode->lchild=newNode->rchild=NULL;///叶子结点
T=newNode; ///插入空树:直接插入
}
else if(e.key<T->data.key)
InsertBST(T->lchild,e);///插入左子树
else
InsertBST(T->rchild,e);///插入右子树
}
///插入过程基本过程是 查找:时间复杂度O(log n)
///二叉排序树创建
///初始化为空树
///读入关键字 :不是结束标志就循环
///节点插入T、读入关键字
void CreateBST(BSTNode* T)
{ ElemType e;
T=NULL;
cin>>e.key;
while(e.key!=-1)
{
InsertBST(T,e);
cin>>e.key;
}
}
///创建n个节点的二叉排序树——>插入n个结点到空树中——>查找n次 时间复杂度O(log n)