数据结构——查找

一、线性表查找

平均查找长度ASL:

   为确定记录在查找表的位置,需和给定值进行比较的  关键字的 个数的期望。

1.顺序查找

①代码

#include <stdio.h>
#include <stdlib.h>
typedef int KeyType;
typedef struct
{
    KeyType key;
}ElemType;
typedef struct
{
    ElemType *R;
    int length;
}SSTable;///顺序查找表


int Search(SSTable ST,KeyType key)
{///从后往前找
    for(int i= ST.length;i>=1;i--)
    if(ST.R[i].key==key)return i;
    return 0;
}


int Search_Seq(SSTable ST;KeyType key)
{///从后往前找,设置监视哨,免去i>=1条件检测步骤
    ST.R[0].key=key;
    for(i=ST.length;ST.R[i].key!=key;i--);
    return i;
}

②性能分析:

                                                       
      p=1/n(查找概率相等)                                不同位置元素在查找时比较次数(1+2+3+……+n)  

时间复杂度:O(n)

2.折半查找

    折半查找过程可用二叉树来描述:树中每一节点对应表中一个记录,但节点值不是记录的 关键字,而是记录在表中的位置序号。把当前查找区间的中间位置作为根,把左子表和右子表  分别作为根的左子树和右子树,由此得到的二叉树称为折半查找的决策树

折半查找法在查找成功时和给定值进行比较的关键字 个数至多为(树的深度)

①判断二叉树是折半查找判定树:

      查找区间中间位置可通过向下和向上两种方式计算,但是在一棵树中只能使用一种取整方式,根据这种规则在树节点上填上有序数字,判断是否是折半查找判定树。

②性能分析:

                                

 层次(比较次数)为h的结点 : 2^(h-1)个,  p=1/n      

           

只适用于有序表,且限于顺序存储结构;不适用于数据元素经常变动的线性表
时间复杂度为O(log n )

3.分块查找(称索引顺序查找)

①特点:整体无序,分块有序

②关键:建立“索引表”:每块有一个索引项,包括关键字项(块中值最大的关键字)、指针项(块的第一个记录的位置)。

③步骤:查找待查记录所在的块(顺序 / 折半)、在块中顺序查找 

④性能分析:介于顺序查找、折半查找之间

           长度为n的表均匀地分成b块,每块含有s个记录,假定表中每个记录的查找概率相等,则每块查找的概率为1/b,块中每个记录的查找 概率为1/s。

1)顺序查找 查找块:

2)折半查找  查找块

⑤优点:

由于块内无序,只要找到该元素对应的块,就可 在该块内进行插入和删除运算,无须进行大量移动。

⑥缺点:

增加一个索引表的存储空间、对初始索引表进行排序运算。

二、树表查找

1.二叉排序树的查找

①性质:左子树<根节点<右子树的值,中序遍历时,得到节点递增的有序序列。

②二叉排序树查找、插入、创建

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
typedef int KeyType;
///二叉排序树的二叉链表存储表示
typedef struct
{
    KeyType key;
    ///InfoType otherinfo;
}ElemType;
typedef struct BSTNode
{
    ElemType data;
    struct BSTNode *lchild,*rchild;

}BSTNode;

///二叉排序树递归查找
 BSTNode*SearchBST(BSTNode*T,KeyType key)
 {///在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素
 ///查找成功,则返回指向该数据元素节点的指针,否则返回空指针
    if(T==NULL||key==T->data.key)return T;
    else if(key<T->data.key)return SearchBST(T->lchild,key);
    else return SearchBST(T->rchild,key);
 }

 ///二叉排序树递归插入
 void InsertBST(BSTNode* T,ElemType e)
 {
    if(T==NULL)
    {
        BSTNode*newNode=(BSTNode*)malloc(sizeof(BSTNode));
        newNode->data=e;
        newNode->lchild=newNode->rchild=NULL;///叶子结点
        T=newNode; ///插入空树:直接插入
    }
    else if(e.key<T->data.key)
     InsertBST(T->lchild,e);///插入左子树
    else
     InsertBST(T->rchild,e);///插入右子树 
 }
 ///插入过程基本过程是 查找:时间复杂度O(log n)


///二叉排序树创建
///初始化为空树
///读入关键字 :不是结束标志就循环
         ///节点插入T、读入关键字
void CreateBST(BSTNode* T)
{   ElemType e;
    T=NULL;
    cin>>e.key;
    while(e.key!=-1)
    {
        InsertBST(T,e);
        cin>>e.key;
    }
}
///创建n个节点的二叉排序树——>插入n个结点到空树中——>查找n次 时间复杂度O(log n)

2.平衡二叉树

3.B-树

4.B+树

三、散列表查找(哈希查找)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值