题目
你非常喜欢大猩猩,于是决定为它们组织一次拍摄活动。大猩猩生活在丛林中,丛林被表示为一个有 𝑛 行和 𝑚 列的网格。共有 𝑤 只大猩猩同意参与拍摄,每只大猩猩的身高为 𝑎𝑖(1≤𝑖≤𝑤)。你希望将所有大猩猩放置在网格的单元格中,并且确保每个单元格中最多只有一只大猩猩。
安排的壮观程度等于网格中所有边长为 𝑘 的子正方形的壮观程度之和。
子正方形的壮观程度等于它内大猩猩身高的总和。
从所有合适的安排中,选择具有最大壮观程度的安排。
输入
第一行包含一个整数 𝑡 (1≤𝑡≤103)— 测试用例的数量。
接下来的测试用例描述如下:
第一行包含整数 𝑛, 𝑚, 𝑘 (1≤𝑛,𝑚≤2⋅10^5, 1≤𝑛⋅𝑚≤2⋅10^5, 1≤𝑘≤min(𝑛,𝑚))— 网格的维度和正方形的边长。
第二行包含一个整数 𝑤 (1≤𝑤≤𝑛⋅𝑚)— 大猩猩的数量。
第三行包含 𝑤 个整数 𝑎1, 𝑎2, …, 𝑎𝑤 (1≤𝑎𝑖≤10^9)— 大猩猩的身高。
保证所有测试用例中 𝑛⋅𝑚 的总和不超过 2⋅10^5,𝑤 的总和也不超过 2⋅10^5。
做法
这题的做法就是算一个格子被多少个k*k的方格包裹过。然后排序,大的猩猩身高乘以大的包裹数量。我赛时一个个枚举,算包裹数量,超时了。然后没想到怎么直接算出包裹数量。
#include<bits/stdc++.h>
using namespace std;
int t,n,m,k,w;
long long a[200010];
bool cmp(long long a,long long b){
return a>b;
}
int main(){
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d",&n,&m,&k,&w);
for(int i=1;i<=w;i++)