动态规划专训2——路径问题

1.不同路径

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” 

问总共有多少条不同的路径

因为题给信息,一维数组已经完成不了要求,所以我们要用二维数组

1.状态表示:用dp[ i ][ j ]表示以第 i 行 j 列为结尾的路径总和

2.状态转移方程:dp[ i ][ j ] = dp[ i - 1][ j ] + dp[ i ][ j - 1 ]

3.初始化:dp[0][1] = 1

4.填表顺序:从上往下填每一行,从左往右填每一列

5.返回值:dp[m][n]

class Solution {
public:
    int uniquePaths(int m, int n) 
    {
        //1. 创建 dp 表
        //2. 初始化
        //3. 填表
        //4. 返回值
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        dp[0][1] = 1;

        for(int i = 1; i <= m; ++i)
            for(int j = 1; j <= n; ++j)
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];

        return dp[m][n];
    }
};

这是ac代码

2.不同路径II

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示

1.状态表示:用dp[ i ][ j ]表示以第 i 行 j 列为结尾的路径总和

2.状态转移方程:dp[ i ][ j ] = dp[ i - 1][ j ] + dp[ i ][ j - 1 ]

3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值