本文章目的也是一个入门或者说是一个引入和了解然后内容都是从一本书抄过来的。我会分模块进行分部分发送,也顺便帮我复习和学习。
机器学习算法分类机器学习算法可以按照不同的标准来进行分类。比如按函数f(x,θ)的不同,机器学习算法可以分为线性模型和非线性模型;按照学习准则的不同,机器学习算法也可以分为统计方法和非统计方法。但一般来说,我们会按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为监督学习、无监督学习和强化学习[11]。
-
2技术篇2.1机器学习算法分类机器学习算法可以按照不同的标准来进行分类。比如按函数f(x,θ)的不同,机器学习算法可以分为线性模型和非线性模型;按照学习准则的不同,机器学习算法也可以分为统计方法和非统计方法。但一般来说,我们会按照训练样本提供的信息以及反馈方式的不同,将机器学习算法分为监督学习、无监督学习和强化学习[11]。图2-1机器学习分类2.1.1监督学习监督式学习(Supervised Learning),是机器学习的一种方法,可以由训练资料中学到或建立一个模式(函数/learning model),并依此模式推测新的实例[12]。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值,或是预测一个分类标签。一个监督式学习者的任务在观察一些事先标记过的训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的输出。要达到此目的,学习者必须以“合理”(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况[13]。根据标签类型的不同,又可以将其分为分类问题和回归问题两类。分类问题的目标是通过输入变量预测出这一样本所属的类别,例如对于植物品种、客户年龄和偏好的预测问题都可以被归结为分类问题。这一领域中使用最多的模型便是支持向量机,用于生成线性分类的
-
-
人工智能之机器学习6决策边界。随着深度学习的发展,很多基于图像信号的分类问题越来越多地使用卷积神经网络来完成。回归主要用于预测某一变量的实数取值,其输出的不是分类结果而是一个实际的值。常见的例子是包括市场价格预测、降水量预测等。人们主要通过线性回归、多项式回归以及核方法等来构建回归模型[14]。监督式学习有两种形态的模型:一种是全域模型,会将输入物件对应到预期输出;另一种是将这种对应实作在一个区域模型(如案例推论及最近邻居法)。为了解决一个给定的监督式学习的问题(手写辨识),必须考虑以下步骤:1)决定训练资料的范例的形态。在做其它事前,工程师应决定要使用哪种资料为范例。譬如,可能是一个手写字符,或一整个手写的辞汇,或一行手写文字。2)搜集训练资料。这资料需要具有真实世界的特征。所以,可以由人类专家或机器(或感测器的)测量中得到输入物件和其相对应输出。3)决定学习函数的输入特征的表示法。学习函数的准确度与输入的物件的表示方式有很大的关联度。传统上,输入的物件会被转成一个特征向量,包含了许多关于描述物件的特征。因为维数灾难的存在,特征的个数不宜太多,但也要足够大,才能准确地预测输出。4)决定要学习的函数和其对应的学习算法所使用的数据结构。譬如,工程师可能选择人工神经网络和决策树。5)完成设计。工程师接着在搜集到的资料上跑学习算法。可以借由将资料跑在资料的子集(称为验证集)或交叉验证(cross-validation)上来调整学习算法的参数。参数调整后,算法可以运行在不同于训练集的测试集。常见的监督学习算法有:k-近邻算法(k-Nearest Neighbors,kNN)、决策树(DecisionTrees)、朴素贝叶斯(Naive Bayesian)等。监督学习的基本流程如下图所示:图2-2监督