k近邻算法之海伦约会

一、KNN算法概述

        K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。

1.1 算法原理

  1. 基本思想

    • 分类任务:给定一个待分类样本,找到训练集中与其距离最近的k个样本,通过多数投票决定其类别。

    • 回归任务:找到k个最近邻样本,取其目标值的平均值作为预测结果。

  2. 距离度量

                常用欧氏距离(Euclidean Distance):其他距离度量:曼哈顿距离、余弦相似度等。

     3.K值选择       

  • k值过小:模型对噪声敏感,容易过拟合。
  • k值过大:模型过于平滑,可能欠拟合。
  • 通常通过交叉验证选择最优k值。

1.2 算法步骤

  1. 数据准备:标准化或归一化特征,确保距离计算不受量纲影响。

  2. 计算距离:计算待预测样本与所有训练样本的距离。

  3. 选择邻居:找到距离最近的k个训练样本。

  4. 决策规则

    • 分类:统计k个邻居中各类别的频数,选择频数最高的类别。

    • 回归:计算k个邻居目标值的平均值。

1.3 优缺点分析 

优点缺点
简单易懂,无需训练过程计算复杂度高,预测时需遍历整个训练集
适用于多分类问题对高维数据敏感(维度灾难)
对异常值不敏感(k较大时)依赖距离度量,需特征缩放
可解释性强,决策边界灵活k值选择对结果影响大

 二、海伦约会实验

2.1 需求分析 

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

       1.不喜欢的人
       2.魅力一般的人
       3.极具魅力的人
       海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。

       海伦收集的样本数据主要包含以下3种特征:

       1.每年获得的飞行常客里程数
       2.玩视频游戏所消耗时间百分比
       3.每周消费的冰淇淋公升数

如图上所示, 在前三种特征数据进行分析后得到了分类结果。

2.2 实验步骤 

1)数据准备
  • 数据来源:实验数据存储在文件 data.txt 中,每行记录一个样本,包括三个特征值(飞行常客里程数、玩视频游戏时间占比、每周消费的冰淇淋公升数)和分类标签(用户喜好程度)。
  • 数据解析:通过 file2matrix 函数,将文本数据解析为 NumPy 矩阵,并提取特征矩阵和分类标签。
(2)数据可视化
  • 使用 Matplotlib 绘制散点图,展示特征之间的关系:
    • 飞行常客里程数 vs 玩视频游戏时间占比
    • 飞行常客里程数 vs 每周消费的冰淇淋公升数
    • 玩视频游戏时间占比 vs 每周消费的冰淇淋公升数
  • 不同类别(不喜欢、魅力一般、极具魅力)用不同颜色区分(黑色、蓝色、红色)。
(3)数据归一化
  • 由于特征值的量纲不同(如飞行常客里程数和冰淇淋消费量),需要进行归一化处理。
  • 使用 autoNorm 函数,将数据缩放到 [0, 1] 范围,避免某些特征因量纲较大而对距离计算产生主导影响。
(4)KNN算法实现
  • 核心函数 classify0
    • 计算测试样本与所有训练样本的欧氏距离。
    • 按距离排序,选择前 k 个最近邻样本。
    • 统计最近邻样本中各类别的出现次数,选择出现次数最多的类别作为预测结果。
(5)分类器测试
  • 使用 datingClassTest 函数验证分类器性能:
    • 将数据集分为训练集(90%)和测试集(10%)。
    • 对测试集中的每个样本进行分类,统计分类错误率。

2.3 算法实现

2.2.1 准备数据

海伦的样本主要包含3个特征:

每年获得的飞行常客里程数、玩视频游戏所耗时间百分比、每周消费的冰淇淋公升数

file2matrix 函数的主要功能是从给定的文本文件中读取数据,解析每一行的内容,并将数据整理成两部分:

  1. 特征矩阵 (returnMat):每一行代表一个样本,每个样本有三个特征。

  2. 分类标签向量 (classLabelVector):每个样本对应一个分类标签,根据文本中标记的喜欢程度进行分类。

#准备数据,从文本文件中解析数据
def file2matrix(filename):
    with open(filename,'r') as fr: #打开文件
        arrayOLines = fr.readlines() # 读取文件所有内容
        numberOfLines = len(arrayOLines)# 得到文件行数
        returnMat = np.zeros((numberOfLines, 3))# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
        classLabelVector = []# 返回的分类标签向量
        index = 0 # 行的索引值
        for line in arrayOLines:
            line = line.strip()#截取掉所有的回车符
            listFromLine = line.split('\t')# 将字符串根据'\t'分隔符分割成一个元素列表
            returnMat[index, :] = listFromLine[0:3]# 选取前三个元素,存放到特征矩阵中
            # 根据文本中标记的喜欢的程度进行分类
            if listFromLine[-1] == 'didntLike':
                classLabelVector.append(1)#1代表不喜欢
            elif listFromLine[-1] == 'smallDoses':
                classLabelVector.append(2)#2代表魅力一般
            elif listFromLine[-1] == 'largeDoses':
                classLabelVector.append(3)#3代表极具魅力
            index += 1
    return returnMat, classLabelVector

2.2.2 分析数据

showdatas 函数的主要功能是根据给定的特征矩阵 datingDataMat 和分类标签 datingLabels,绘制散点图以可视化数据分布。具体来说:

  1. 绘制散点图:使用特征矩阵的前两列数据绘制散点图。
  2. 颜色区分:根据分类标签为不同类别的点着色。
  3. 图例和标签:添加图例、标题和坐标轴标签,以便更好地理解图表。

#分析数据:使用Matplotlib创建散点图
def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    mpl.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体 SimHei为黑体
    mpl.rcParams['axes.unicode_minus'] = False  #用来正常显示负号
 
    #将fig画布分隔成2行2列,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,9))
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
 
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=0.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title('每年获得的飞行常客里程数与玩视频游戏所消耗时间占比')
    axs0_xlabel_text = axs[0][0].set_xlabel('每年获得的飞行常客里程数')
    axs0_ylabel_text = axs[0][0].set_ylabel('玩视频游戏所消耗时间占比')
    plt.setp(axs0_title_text, size=12, weight='bold', color='red')
    plt.setp(axs0_xlabel_text, size=10, weight='bold', color='black')
    plt.setp(axs0_ylabel_text, size=10, weight='bold', color='black')
 #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='不喜欢')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='魅力一般')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='极具魅力')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()

2.2.3 分析数据 

autoNorm 函数的主要功能是对给定的数据集 dataSet 进行归一化处理,返回归一化后的数据、数据范围(最大值与最小值的差)以及每列的最小值。

#准备数据,数据归一化处理
def autoNorm(dataSet):
    minVals = dataSet.min(0)#获得每列数据的最小值
    maxVals = dataSet.max(0)#获得每列数据的最大值
    ranges = maxVals - minVals#最大值和最小值的范围
    normDataSet = np.zeros(np.shape(dataSet))#shape(dataSet)返回dataSet的矩阵行列数
    m = dataSet.shape[0]#返回dataSet的行数
    normDataSet = dataSet - np.tile(minVals, (m, 1))#原始值减去最小值
    normDataSet = normDataSet / np.tile(ranges, (m, 1))#除以最大和最小值的差,得到归一化数据
    return normDataSet, ranges, minVals#返回归一化数据结果,数据范围,最小值

2.2.4 实施算法

classify0 函数的主要功能是根据给定的输入向量 inX、数据集 dataSet、标签 labels 和邻居数 k,使用 KNN 算法对 inX 进行分类,返回其预测的类别。

 

计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类,输入k总是正整数;最后将classCount字典分解为元组列表,导入itemgetter方法,按照第二个元素的次序对元组进行排序。此处的排序为逆序,最后返回发生频率最高的元素标签。

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]#numpy函数shape[0]返回dataSet的行数
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    sqDiffMat = diffMat**2#二维特征相减后平方
    sqDistances = sqDiffMat.sum(axis=1) #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    distances = sqDistances**0.5#开方,计算出距离
    sortedDistIndices = distances.argsort()#返回distances中元素从小到大排序后的索引值
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndices[i]]#取出前k个元素的类别
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#key=operator.itemgetter(1)根据字典的值进行排序,reverse降序排序字典
    return sortedClassCount[0][0]#返回次数最多的类别,即所要分类的类别

这段代码实现了 KNN 算法的核心分类功能,通过计算输入向量与数据集中样本的距离,选择最近的 k 个邻居进行投票,返回出现次数最多的类别。

2.2.5 测试算法

datingClassTest 函数的主要功能是:

  1. 从文件中读取约会数据集。
  2. 对数据进行归一化处理。
  3. 将数据集划分为训练集和测试集。
  4. 使用 KNN 算法对测试集进行分类,并计算分类错误率。
def datingClassTest():
    filename = "D:\hailun_knn\datingTestSet.txt"#打开的文件名
    datingDataMat, datingLabels = file2matrix(filename) #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
    hoRatio = 0.10#取所有数据的百分之十
    normMat, ranges, minVals = autoNorm(datingDataMat)#数据归一化,返回归一化后的矩阵,数据范围,数据最小值
    m = normMat.shape[0]#获得normMat的行数
    numTestVecs = int(m * hoRatio)#百分之十的测试数据的个数
    errorCount = 0.0#分类错误计数器
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 4)#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

2.2.6 使用算法

classifyPerson 函数的主要功能是:

  1. 获取用户输入的三个特征值。
  2. 读取约会数据集并进行归一化处理。
  3. 对用户输入的特征进行归一化处理。
  4. 使用 KNN 算法对归一化后的用户特征进行分类,并输出预测结果。
def classifyPerson():
    resultList = ['不喜欢','有些喜欢','非常喜欢']#输出结果
    #用户输入
    ffMiles = float(input("每年获得的飞行常客里程数:"))
    precentTats = float(input("玩视频游戏所耗时间百分比:"))
    iceCream = float(input("每周消费的冰激淋公升数:"))
    filename = "D:\hailun_knn\datingTestSet.txt"#打开的文件名
    datingDataMat, datingLabels = file2matrix(filename)#打开并处理数据
    normMat, ranges, minVals = autoNorm(datingDataMat)#训练集归一化
    inArr = np.array([ffMiles,precentTats, iceCream])#生成NumPy数组,测试集
    norminArr = (inArr - minVals) / ranges#测试集归一化
    classifierResult = classify0(norminArr, normMat, datingLabels, 3)#返回分类结果
    print("你可能%s这个人" % (resultList[classifierResult-1]))#打印结果

三、k值的选取

3.1 k值对实验结果的影响

1. 模型复杂度和过拟合/欠拟合

  • 小 k 值
    • 高复杂度:模型过于敏感,易受噪声影响。
    • 过拟合风险:可能过度拟合训练数据中的噪声。
    • 决策边界复杂:不规则,对微小变化敏感。
  • 大 k 值
    • 低复杂度:模型平滑,忽略局部波动。
    • 欠拟合风险:可能无法捕捉数据中的复杂模式。
    • 决策边界平滑:可能忽略细微结构。

2. 分类结果的稳定性

  • 小 k 值
    • 不稳定:结果易受训练数据变化影响。
    • 对噪声敏感:噪声点可能被误判为最近邻。
  • 大 k 值
    • 稳定:结果受单个数据点影响小。
    • 抗噪能力强:噪声影响被稀释。

3. 计算效率

  • 小 k 值
    • 计算效率高:只需计算少数邻居的距离。
    • 适用于大规模数据:加快计算速度。
  • 大 k 值
    • 计算效率低:需计算更多邻居的距离。
    • 可能需要优化:对非常大的 k,需采用近似算法。

3.2 针对海伦实验k值的选取

当k=2时,实验结果如下:

  • 模型复杂度
    • 模型复杂度高,因为只考虑最近的两个邻居。
    • 决策边界可能非常不规则,对训练数据中的微小变化敏感。
  • 过拟合风险
    • 容易过拟合,特别是当训练数据中存在噪声或异常值时。
    • 最近的两个邻居可能恰好是噪声点,导致分类错误。
  • 稳定性
    • 分类结果不稳定,对训练数据的微小变化非常敏感。
    • 单个数据点的变化可能显著影响分类结果。
  • 适用场景
    • 适用于数据规模较小且噪声较少的情况。
    • 可能在数据分布较为简单时表现较好。

当k=3时,实验结果如下:

  • 模型复杂度
    • 模型复杂度略低于 k=2,但仍然较高。
    • 决策边界开始变得稍微平滑。
  • 过拟合风险
    • 过拟合风险降低,因为考虑了更多的邻居。
    • 对噪声的鲁棒性略有增强。
  • 稳定性
    • 分类结果比 k=2 时更稳定。
    • 单个数据点的影响减小。
  • 适用场景
    • 适用于数据规模适中且噪声较少的情况。
    • 可能在数据分布较为复杂时表现较好。

当k=4时,实验结果如下:

  • 模型复杂度
    • 模型复杂度进一步降低,决策边界更加平滑。
    • 开始捕捉数据中的更多模式。
  • 过拟合风险
    • 过拟合风险进一步降低,模型更加鲁棒。
    • 对噪声的抵抗能力增强。
  • 稳定性
    • 分类结果更加稳定,受单个数据点的影响更小。
    • 结果的波动性减小。
  • 适用场景
    • 适用于数据规模较大且噪声较多的情况。
    • 可能在数据分布较为均匀时表现较好。

当k=5时,实验结果如下:

  • 模型复杂度
    • 模型复杂度较低,决策边界更加平滑。
    • 可能忽略数据中的细微结构。
  • 欠拟合风险
    • 开始出现欠拟合的风险,因为模型过于简单,无法捕捉数据中的复杂模式。
    • 可能无法准确分类边界附近的样本。
  • 稳定性
    • 分类结果非常稳定,受单个数据点的影响极小。
    • 结果的可靠性增强。
  • 适用场景
    • 适用于数据规模较大且噪声较多的情况。
    • 可能在数据分布较为简单时表现较好。

当k=6时,实验结果如下:

  • 模型复杂度
    • 模型复杂度最低,决策边界非常平滑。
    • 可能忽略数据中的重要模式。
  • 欠拟合风险
    • 欠拟合风险增加,模型可能过于简单,无法准确分类。
    • 对数据中的细微变化不敏感。
  • 稳定性
    • 分类结果非常稳定,但可能过于保守。
    • 结果的波动性最小。
  • 适用场景
    • 适用于数据规模非常大且噪声较多的情况。
    • 可能在数据分布较为均匀且简单时表现较好。

实验结果对比总结

k 值模型复杂度过拟合风险欠拟合风险稳定性适用场景
2小规模、低噪声
3中高中等规模、低噪声
4大规模、中噪声
5中低大规模、中噪声
6非常高大规模、高噪声

 四、实验结果

  • 本实验成功实现了基于KNN算法的约会网站用户分类系统。
  • 通过数据预处理、可视化和分类器测试,验证了KNN算法在该任务中的有效性。
  • 实验结果表明,KNN算法能够根据用户的特征值准确预测其喜好程度,为约会网站的推荐系统提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值