一、KNN算法概述
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。
1.1 算法原理
-
基本思想
-
分类任务:给定一个待分类样本,找到训练集中与其距离最近的k个样本,通过多数投票决定其类别。
-
回归任务:找到k个最近邻样本,取其目标值的平均值作为预测结果。
-
-
距离度量
常用欧氏距离(Euclidean Distance):其他距离度量:曼哈顿距离、余弦相似度等。
3.K值选择
- k值过小:模型对噪声敏感,容易过拟合。
- k值过大:模型过于平滑,可能欠拟合。
- 通常通过交叉验证选择最优k值。
1.2 算法步骤
-
数据准备:标准化或归一化特征,确保距离计算不受量纲影响。
-
计算距离:计算待预测样本与所有训练样本的距离。
-
选择邻居:找到距离最近的k个训练样本。
-
决策规则:
-
分类:统计k个邻居中各类别的频数,选择频数最高的类别。
-
回归:计算k个邻居目标值的平均值。
-
1.3 优缺点分析
优点 | 缺点 |
---|---|
简单易懂,无需训练过程 | 计算复杂度高,预测时需遍历整个训练集 |
适用于多分类问题 | 对高维数据敏感(维度灾难) |
对异常值不敏感(k较大时) | 依赖距离度量,需特征缩放 |
可解释性强,决策边界灵活 | k值选择对结果影响大 |
二、海伦约会实验
2.1 需求分析
海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:
1.不喜欢的人
2.魅力一般的人
3.极具魅力的人
海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。
海伦收集的样本数据主要包含以下3种特征:
1.每年获得的飞行常客里程数
2.玩视频游戏所消耗时间百分比
3.每周消费的冰淇淋公升数
如图上所示, 在前三种特征数据进行分析后得到了分类结果。
2.2 实验步骤
1)数据准备
- 数据来源:实验数据存储在文件
data.txt
中,每行记录一个样本,包括三个特征值(飞行常客里程数、玩视频游戏时间占比、每周消费的冰淇淋公升数)和分类标签(用户喜好程度)。 - 数据解析:通过
file2matrix
函数,将文本数据解析为 NumPy 矩阵,并提取特征矩阵和分类标签。
(2)数据可视化
- 使用 Matplotlib 绘制散点图,展示特征之间的关系:
- 飞行常客里程数 vs 玩视频游戏时间占比
- 飞行常客里程数 vs 每周消费的冰淇淋公升数
- 玩视频游戏时间占比 vs 每周消费的冰淇淋公升数
- 不同类别(不喜欢、魅力一般、极具魅力)用不同颜色区分(黑色、蓝色、红色)。
(3)数据归一化
- 由于特征值的量纲不同(如飞行常客里程数和冰淇淋消费量),需要进行归一化处理。
- 使用
autoNorm
函数,将数据缩放到 [0, 1] 范围,避免某些特征因量纲较大而对距离计算产生主导影响。
(4)KNN算法实现
- 核心函数
classify0
:- 计算测试样本与所有训练样本的欧氏距离。
- 按距离排序,选择前
k
个最近邻样本。 - 统计最近邻样本中各类别的出现次数,选择出现次数最多的类别作为预测结果。
(5)分类器测试
- 使用
datingClassTest
函数验证分类器性能:- 将数据集分为训练集(90%)和测试集(10%)。
- 对测试集中的每个样本进行分类,统计分类错误率。
2.3 算法实现
2.2.1 准备数据
海伦的样本主要包含3个特征:
每年获得的飞行常客里程数、玩视频游戏所耗时间百分比、每周消费的冰淇淋公升数
file2matrix
函数的主要功能是从给定的文本文件中读取数据,解析每一行的内容,并将数据整理成两部分:
-
特征矩阵 (
returnMat
):每一行代表一个样本,每个样本有三个特征。 -
分类标签向量 (
classLabelVector
):每个样本对应一个分类标签,根据文本中标记的喜欢程度进行分类。
#准备数据,从文本文件中解析数据
def file2matrix(filename):
with open(filename,'r') as fr: #打开文件
arrayOLines = fr.readlines() # 读取文件所有内容
numberOfLines = len(arrayOLines)# 得到文件行数
returnMat = np.zeros((numberOfLines, 3))# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
classLabelVector = []# 返回的分类标签向量
index = 0 # 行的索引值
for line in arrayOLines:
line = line.strip()#截取掉所有的回车符
listFromLine = line.split('\t')# 将字符串根据'\t'分隔符分割成一个元素列表
returnMat[index, :] = listFromLine[0:3]# 选取前三个元素,存放到特征矩阵中
# 根据文本中标记的喜欢的程度进行分类
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)#1代表不喜欢
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)#2代表魅力一般
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)#3代表极具魅力
index += 1
return returnMat, classLabelVector
2.2.2 分析数据
showdatas
函数的主要功能是根据给定的特征矩阵 datingDataMat
和分类标签 datingLabels
,绘制散点图以可视化数据分布。具体来说:
- 绘制散点图:使用特征矩阵的前两列数据绘制散点图。
- 颜色区分:根据分类标签为不同类别的点着色。
- 图例和标签:添加图例、标题和坐标轴标签,以便更好地理解图表。
#分析数据:使用Matplotlib创建散点图
def showdatas(datingDataMat, datingLabels):
#设置汉字格式
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 SimHei为黑体
mpl.rcParams['axes.unicode_minus'] = False #用来正常显示负号
#将fig画布分隔成2行2列,不共享x轴和y轴,fig画布的大小为(13,8)
#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,9))
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=0.5)
#设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title('每年获得的飞行常客里程数与玩视频游戏所消耗时间占比')
axs0_xlabel_text = axs[0][0].set_xlabel('每年获得的飞行常客里程数')
axs0_ylabel_text = axs[0][0].set_ylabel('玩视频游戏所消耗时间占比')
plt.setp(axs0_title_text, size=12, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=10, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=10, weight='bold', color='black')
#设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='不喜欢')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='魅力一般')
largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='极具魅力')
#添加图例
axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
#显示图片
plt.show()
2.2.3 分析数据
autoNorm
函数的主要功能是对给定的数据集 dataSet
进行归一化处理,返回归一化后的数据、数据范围(最大值与最小值的差)以及每列的最小值。
#准备数据,数据归一化处理
def autoNorm(dataSet):
minVals = dataSet.min(0)#获得每列数据的最小值
maxVals = dataSet.max(0)#获得每列数据的最大值
ranges = maxVals - minVals#最大值和最小值的范围
normDataSet = np.zeros(np.shape(dataSet))#shape(dataSet)返回dataSet的矩阵行列数
m = dataSet.shape[0]#返回dataSet的行数
normDataSet = dataSet - np.tile(minVals, (m, 1))#原始值减去最小值
normDataSet = normDataSet / np.tile(ranges, (m, 1))#除以最大和最小值的差,得到归一化数据
return normDataSet, ranges, minVals#返回归一化数据结果,数据范围,最小值
2.2.4 实施算法
classify0
函数的主要功能是根据给定的输入向量 inX
、数据集 dataSet
、标签 labels
和邻居数 k
,使用 KNN 算法对 inX
进行分类,返回其预测的类别。
计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类,输入k总是正整数;最后将classCount字典分解为元组列表,导入itemgetter方法,按照第二个元素的次序对元组进行排序。此处的排序为逆序,最后返回发生频率最高的元素标签。
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#numpy函数shape[0]返回dataSet的行数
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
sqDiffMat = diffMat**2#二维特征相减后平方
sqDistances = sqDiffMat.sum(axis=1) #sum()所有元素相加,sum(0)列相加,sum(1)行相加
distances = sqDistances**0.5#开方,计算出距离
sortedDistIndices = distances.argsort()#返回distances中元素从小到大排序后的索引值
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]]#取出前k个元素的类别
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#key=operator.itemgetter(1)根据字典的值进行排序,reverse降序排序字典
return sortedClassCount[0][0]#返回次数最多的类别,即所要分类的类别
这段代码实现了 KNN 算法的核心分类功能,通过计算输入向量与数据集中样本的距离,选择最近的 k
个邻居进行投票,返回出现次数最多的类别。
2.2.5 测试算法
datingClassTest
函数的主要功能是:
- 从文件中读取约会数据集。
- 对数据进行归一化处理。
- 将数据集划分为训练集和测试集。
- 使用 KNN 算法对测试集进行分类,并计算分类错误率。
def datingClassTest():
filename = "D:\hailun_knn\datingTestSet.txt"#打开的文件名
datingDataMat, datingLabels = file2matrix(filename) #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
hoRatio = 0.10#取所有数据的百分之十
normMat, ranges, minVals = autoNorm(datingDataMat)#数据归一化,返回归一化后的矩阵,数据范围,数据最小值
m = normMat.shape[0]#获得normMat的行数
numTestVecs = int(m * hoRatio)#百分之十的测试数据的个数
errorCount = 0.0#分类错误计数器
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 4)#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
2.2.6 使用算法
classifyPerson
函数的主要功能是:
- 获取用户输入的三个特征值。
- 读取约会数据集并进行归一化处理。
- 对用户输入的特征进行归一化处理。
- 使用 KNN 算法对归一化后的用户特征进行分类,并输出预测结果。
def classifyPerson():
resultList = ['不喜欢','有些喜欢','非常喜欢']#输出结果
#用户输入
ffMiles = float(input("每年获得的飞行常客里程数:"))
precentTats = float(input("玩视频游戏所耗时间百分比:"))
iceCream = float(input("每周消费的冰激淋公升数:"))
filename = "D:\hailun_knn\datingTestSet.txt"#打开的文件名
datingDataMat, datingLabels = file2matrix(filename)#打开并处理数据
normMat, ranges, minVals = autoNorm(datingDataMat)#训练集归一化
inArr = np.array([ffMiles,precentTats, iceCream])#生成NumPy数组,测试集
norminArr = (inArr - minVals) / ranges#测试集归一化
classifierResult = classify0(norminArr, normMat, datingLabels, 3)#返回分类结果
print("你可能%s这个人" % (resultList[classifierResult-1]))#打印结果
三、k值的选取
3.1 k值对实验结果的影响
1. 模型复杂度和过拟合/欠拟合
- 小 k 值:
- 高复杂度:模型过于敏感,易受噪声影响。
- 过拟合风险:可能过度拟合训练数据中的噪声。
- 决策边界复杂:不规则,对微小变化敏感。
- 大 k 值:
- 低复杂度:模型平滑,忽略局部波动。
- 欠拟合风险:可能无法捕捉数据中的复杂模式。
- 决策边界平滑:可能忽略细微结构。
2. 分类结果的稳定性
- 小 k 值:
- 不稳定:结果易受训练数据变化影响。
- 对噪声敏感:噪声点可能被误判为最近邻。
- 大 k 值:
- 稳定:结果受单个数据点影响小。
- 抗噪能力强:噪声影响被稀释。
3. 计算效率
- 小 k 值:
- 计算效率高:只需计算少数邻居的距离。
- 适用于大规模数据:加快计算速度。
- 大 k 值:
- 计算效率低:需计算更多邻居的距离。
- 可能需要优化:对非常大的 k,需采用近似算法。
3.2 针对海伦实验k值的选取
当k=2时,实验结果如下:
- 模型复杂度:
- 模型复杂度高,因为只考虑最近的两个邻居。
- 决策边界可能非常不规则,对训练数据中的微小变化敏感。
- 过拟合风险:
- 容易过拟合,特别是当训练数据中存在噪声或异常值时。
- 最近的两个邻居可能恰好是噪声点,导致分类错误。
- 稳定性:
- 分类结果不稳定,对训练数据的微小变化非常敏感。
- 单个数据点的变化可能显著影响分类结果。
- 适用场景:
- 适用于数据规模较小且噪声较少的情况。
- 可能在数据分布较为简单时表现较好。
当k=3时,实验结果如下:
- 模型复杂度:
- 模型复杂度略低于 k=2,但仍然较高。
- 决策边界开始变得稍微平滑。
- 过拟合风险:
- 过拟合风险降低,因为考虑了更多的邻居。
- 对噪声的鲁棒性略有增强。
- 稳定性:
- 分类结果比 k=2 时更稳定。
- 单个数据点的影响减小。
- 适用场景:
- 适用于数据规模适中且噪声较少的情况。
- 可能在数据分布较为复杂时表现较好。
当k=4时,实验结果如下:
- 模型复杂度:
- 模型复杂度进一步降低,决策边界更加平滑。
- 开始捕捉数据中的更多模式。
- 过拟合风险:
- 过拟合风险进一步降低,模型更加鲁棒。
- 对噪声的抵抗能力增强。
- 稳定性:
- 分类结果更加稳定,受单个数据点的影响更小。
- 结果的波动性减小。
- 适用场景:
- 适用于数据规模较大且噪声较多的情况。
- 可能在数据分布较为均匀时表现较好。
当k=5时,实验结果如下:
- 模型复杂度:
- 模型复杂度较低,决策边界更加平滑。
- 可能忽略数据中的细微结构。
- 欠拟合风险:
- 开始出现欠拟合的风险,因为模型过于简单,无法捕捉数据中的复杂模式。
- 可能无法准确分类边界附近的样本。
- 稳定性:
- 分类结果非常稳定,受单个数据点的影响极小。
- 结果的可靠性增强。
- 适用场景:
- 适用于数据规模较大且噪声较多的情况。
- 可能在数据分布较为简单时表现较好。
当k=6时,实验结果如下:
- 模型复杂度:
- 模型复杂度最低,决策边界非常平滑。
- 可能忽略数据中的重要模式。
- 欠拟合风险:
- 欠拟合风险增加,模型可能过于简单,无法准确分类。
- 对数据中的细微变化不敏感。
- 稳定性:
- 分类结果非常稳定,但可能过于保守。
- 结果的波动性最小。
- 适用场景:
- 适用于数据规模非常大且噪声较多的情况。
- 可能在数据分布较为均匀且简单时表现较好。
实验结果对比总结
k 值 | 模型复杂度 | 过拟合风险 | 欠拟合风险 | 稳定性 | 适用场景 |
---|---|---|---|---|---|
2 | 高 | 高 | 低 | 低 | 小规模、低噪声 |
3 | 中高 | 中 | 低 | 中 | 中等规模、低噪声 |
4 | 中 | 低 | 低 | 高 | 大规模、中噪声 |
5 | 中低 | 低 | 中 | 高 | 大规模、中噪声 |
6 | 低 | 低 | 高 | 非常高 | 大规模、高噪声 |
四、实验结果
- 本实验成功实现了基于KNN算法的约会网站用户分类系统。
- 通过数据预处理、可视化和分类器测试,验证了KNN算法在该任务中的有效性。
- 实验结果表明,KNN算法能够根据用户的特征值准确预测其喜好程度,为约会网站的推荐系统提供了有力支持。