一、支持向量机
1.1 简介
支持向量机(SVM)** 是一种有监督的机器学习算法,广泛应用于分类和回归问题。其核心思想是通过寻找一个最优超平面(Hyperplane)来对数据进行分割,使得不同类别的数据点之间的间隔(Margin)最大化。SVM 在小样本、高维数据场景中表现优异,常用于图像识别、文本分类、生物信息学等领域。
1.2 核心概念与原理
1. 超平面与间隔最大化
- 超平面:在 n 维空间中,超平面是 n-1 维的决策边界,用于分离不同类别的数据。例如,在二维空间中是一条直线,三维空间中是一个平面。
- 间隔(Margin):指两类数据点到超平面的最小距离之和。SVM 的目标是找到使间隔最大的超平面,以提高模型的泛化能力。
2. 支持向量(Support Vectors)
- 决定超平面位置的关键数据点,即离超平面最近的样本点。
- 超平面仅由支持向量决定,其他样本点不影响模型决策。
3. 线性可分与线性不可分情况
- 线性可分:数据可通过线性超平面完全分离,此时使用硬间隔最大化求解。
- 线性不可分:数据存在噪声或重叠,需引入 ** 软间隔(Soft Margin)** 允许少量样本分类错误,通过惩罚因子(C)平衡间隔大小与分类误差。
1.3 数学模型
1. 线性 SVM 的数学表达
假设数据集为 (xi,yi),其中 xi∈Rn,yi∈{−1,+1}(二分类)。
超平面方程为:
优化目标:
2. 软间隔 SVM(引入松弛变量)
允许部分样本违反约束,引入松弛变量 ξi≥0:
其中,C>0 为惩罚参数,控制分类错误的代价。
3. 核技巧
- 解决非线性分类问题:通过核函数将低维输入空间的数据映射到高维特征空间,使数据在高维空间线性可分。
- 常用核函数
二、实例分析
从一个可以由线性边界分隔的二维数据集开始。在这个数据集中,正例子(用+表示)和负例子(用o表示)的位置表明可以由线性边界分割。但是,注意,在最左边有一个异常的正例子+,大约是( 0.1 , 4.1 ) (0.1,4.1)(0.1,4.1)。在本实验中,将看到这种特殊的例子如何影响SVM的决策边界。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from sklearn import svm
import seaborn as sns
def load_mat(path):
data=loadmat(path)
X=data['X']
y=data['y']
return X,y
path="./data/ex6data1.mat"
X,y=load_mat(path)
def plot_data(X,y,fig,ax):
data=pd.DataFrame(X,columns=['X1','X2'])
data['y']=y
positive=data[data['y'].isin([1])]
negative=data[data['y'].isin([0])]
ax.scatter(positive['X1'],positive['X2'],s=30,marker='+',c='black',label='Positive')
ax.scatter(negative['X1'],negative['X2'],s=30,marker='o',c='orange',label='Negative')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.legend()
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X, y,fig,ax)
plt.title("Example Dataset 1")
plt.show()
在本部分的实验中,将尝试对SVMs使用不同的C参数值。C参数是一个正数,它控制了对错误分类的训练数据的惩罚,其中C较大,说明SVM尝试正确地分类所有的数据。
svc = svm.SVC(C=1, kernel='linear')
SVC(C=1, kernel='linear')
svc.fit(X,y.flatten())
svc.score(X,y.flatten())
可视化分类边界
def plot_boundary(svc,X,y,C,diff=10**-3):
x1,x2=decision_boundary(svc,X,diff)
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X, y,fig,ax)
ax.scatter(x1,x2,s=5,c='blue',label='Boundary')
plt.title("SVM Decision Boundary with C = {} (Example Dataset 1)".format(C))
plt.show()
def decision_boundary(svc,X,diff=10**-3):
x1_min,x1_max=X[:,0].min(),X[:,0].max()
x2_min,x2_max=X[:,1].min(),X[:,1].max()
x1=np.linspace(x1_min,x1_max,2000)
x2=np.linspace(x2_min,x2_max,2000)#将整个平面分割为2000*2000的小方格,如果后面感觉运行太久可以适当缩小到500
cordinates = [(x, y) for x in x1 for y in x2]
x1, x2 = zip(*cordinates)
c_val=pd.DataFrame({'x1':x1,'x2':x2})
c_val['cval']=svc.decision_function(c_val[['x1','x2']])#对所有的小方格的:预测样本的置信度得分(接近0的就是分割边界)
decision=c_val[np.abs(c_val['cval'])<diff]
return decision.x1,decision.x2
当C=1
时,发现SVM
将决策边界放在两个数据集之间的间隙中,并将最左边的数据点错误分类。
svc2 = svm.SVC(C=100,kernel='linear')
svc2
SVC(C=100, kernel='linear')
svc2.fit(X,y.flatten())
svc2.score(X,y.flatten())
当C=100
时,发现SVM
对每个数据都正确分类,但是该决策边界与数据匹配并不自然。
plot_boundary(svc2,X,y,100,10**-3)
综上:
- 当
C
比较小时模型对错误分类的惩罚较小,比较宽松,允许一定的错误分类存在,间隔较大。 - 当
C
比较大时模型对错误分类的惩罚较大,比较严格,错误分类少,间隔较小。
1.2.2 Example
接下来的实验中的数据的分布图如下图所示,可以观察到,该数据集的正例子和负例子之间没有线性决策边界。不过,通过使用高斯核SVM
,将能够学习到一个非线性决策边界,它在该数据集表现得相当好。
path="./data/ex6data2.mat"
X2,y2=load_mat(path)
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X2,y2,fig,ax)
plt.title("Example Dataset 2")
plt.show()
上面已经正确地实现了高斯核函数GaussKernel
,接下来将继续在这个数据集上用高斯核训练SVM
。下图绘制了具有高斯核的SVM
所找到的决策边界,该决策边界能够正确地分离大多数正负例子,并且很自然地遵循了数据集的轮廓。
sigma=0.1
gamma=np.power(sigma,-2)/2
clf=svm.SVC(C=1,kernel='rbf',gamma=gamma)
model=clf.fit(X2, y2.flatten())
clf.score(X2, y2.flatten())
dx1,dx2=decision_boundary(model,X2,diff=0.01) #找到决策边界的点
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X2, y2, fig, ax)
ax.scatter(dx1,dx2,s=5)
plt.title("SVM (Gaussian Kernel) Decision Boundary (Example Dataset 2)")
plt.show()
1.2.3 Example
def load_mat3(path):
data=loadmat(path)
X=data['X']
y=data['y']
Xval=data['Xval']
yval=data['yval']
return X,y,Xval,yval
path="./data/ex6data3.mat"
X3,y3,X3val,y3val=load_mat3(path)
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X3,y3,fig,ax)
plt.title("Example Dataset 3")
plt.show()
第3 33个数据集给出了训练集和验证集,并且基于验证集的性能来为SVM模型找到最优超参数。对于C , σ C,\sigmaC,σ,有候选值( 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 , 30 ) (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30)(0.01,0.03,0.1,0.3,1,3,10,30)。尝试上面列出的C CC和σ \sigmaσ的8 88个值中的每个,最终将训练和评估(在交叉验证集上)共64 6464个不同的模型。
C_values=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]
sigma_values=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]
best_score=0
best_params={'C':None,'sigma':None}
for C in C_values:
for sigma in sigma_values:
clf=svm.SVC(C=C,kernel='rbf',gamma=sigma)
model=clf.fit(X3, y3.flatten())
score=clf.score(X3val, y3val.flatten())
if score>best_score:
best_score=score
best_params['C'],best_params['sigma']=C,sigma
best_score,best_params
(0.965, {'C': 3, 'sigma': 30})
clf=svm.SVC(C=best_params['C'],kernel='rbf',gamma=best_params['sigma'])
model=clf.fit(X3, y3.flatten())
clf.score(X3val, y3val.flatten())
根据上面的代码找到了最佳参数C
和sigma
,SVM
得到了下图的决策边界
dx1,dx2=decision_boundary(model,X3,diff=0.005) #找到决策边界的点
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X3, y3, fig, ax)
ax.scatter(dx1,dx2,s=5)
plt.title("SVM (Gaussian Kernel) Decision Boundary (Example Dataset 3)")
plt.show()
2.1 Preprocessing Emails(预处理电子邮件)
在开始执行机器学习任务之前,查看电子邮件的类型,下图显示了一个包含一个URL、电子邮件地址(在末尾)、数字和美元金额的电子邮件。虽然许多电子邮件包含类似实体(例如,数字、URL、电子邮件地址),但特定的实体(例如,特定的URL或特定的金额)在几乎每封电子邮件中都是不同的。因此,在处理电子邮件时经常使用的一种方法是"规范化"这些值,这样所有的url都处理成相同的,所有数字都处理成相同的。例如,用字符串httpaddr替换电子邮件中的URL,表示存在一个URL。这样做可以让垃圾邮件分类器根据是否存在URL来做出分类决定。这可以提高垃圾邮件分类器的性能,因为垃圾邮件发送者通常会将URL随机化,因此在新的垃圾邮件片段中再次看到特定出现过的URL的几率非常小。
import re
def processEmail(email):
email=email.lower()
email=re.sub('<[^<>]>',' ',email)
email=re.sub('(http|https)://[^\s]*','httpaddr',email)
email=re.sub('[^\s]+@[^\s]+','emailaddr',email)
email=re.sub('[\$]+','dollar',email)
email=re.sub('[\d]+','number',email)
return email
接下来提取词干并且去除非字符内容。
import nltk, nltk.stem.porter # 英文分词算法
def email_TokenList(email):
stemmer=nltk.stem.porter.PorterStemmer()
email=processEmail(email)
tokens=re.split('[ \@\$\/\#\.\-\:\&\*\+\=\[\]\?\!\(\)\{\}\,\'\"\>\_\<\;\%]',email)
tokenList=[]
for token in tokens:
token=re.sub('[^a-zA-Z0-9]','',token)
stemmed = stemmer.stem(token)#提取词根
if(len(token)):
tokenList.append(stemmed)
return tokenList
在对电子邮件进行预处理后,得到电子邮件的单词列表(如下)。接下来选择在分类器中使用哪些词,以及需要忽略哪些词。
2.1.1 Vocabulary List
在本节实验中,只选择最经常出现的单词作为单词集(词汇表)。由于在训练集中很少出现的单词一般也只出现在少数电子邮件中,它们可能会导致模型过拟合。词汇表vocab.txt里面存储了在实际中经常使用的单词,共1899 18991899个。(在实践中,词汇表大约有1万到5万字)。在词汇表中,将预处理电子邮件中的每个单词映射到一个单词索引列表中,其中包含词汇和单词索引。
完成processEmail函数,传入字符串str(处理过的电子邮件中的单个单词),然后在词汇表中查找该单词,看它是否存在于词汇表列表中,如果存在,将单词的索引添加到单词索引变量中;如果不存在,可以跳过这个词。
def processEmail_index(email,vocab):
token=email_TokenList(email)
index=[i for i in range(len(vocab)) if vocab[i] in token]
return index
vocab = pd.read_table('./data/vocab.txt',names=['words'])
vocab=vocab.values
processEmail_index(email, vocab)
2.2 Extracting Features from Emails(从电子邮件中提取特征)
接下来实现功能提取,将每个电子邮件转换为一个R n R^nR
n 的向量。电子邮件的特性x i ∈ { 0 , 1 } x_i\in \lbrace0,1\rbracex
i∈{0,1}表示第i ii个单词是否出现在电子邮件中,如果第i ii个单词在电子邮件中,那么x i = 1 x_i=1xi =1;否则x i = 0 x_i=0x i =0。
编写函数emailFeatures完成上述的功能,运行代码,可以看到特征向量的长度为1899 18991899并且有45 4545个非零项。
def emailFeatures(email):
df = pd.read_table('./data/vocab.txt',names=['words'])
vocab=df.values
vector=np.zeros(len(vocab))
vocal_index=processEmail_index(email,vocab)
for i in vocal_index:
vector[i]=1
return vector
vector=emailFeatures(email)
print('vector had length {} and {} non-zero entries'.format(len(vector), int(vector.sum())))
2.3 Training SVM for Spam Classification(垃圾邮件分类-SVM)
spamTrain.mat包含4000 40004000个垃圾邮件和非垃圾邮件的训练数据,spamTest.mat包含1000 10001000个测试数据。每个原始电子邮件使用processEmail函数和emailFeatures函数处理,并转换为一个向量x ( i ) ∈ R 1899 x^{(i)}\in R^{1899}x
path="./data/spamTrain.mat"
X,y=load_mat(path)
path="./data/spamTest.mat"
data=loadmat(path)
Xtest,ytest=data["Xtest"],data["ytest"]
X.shape,y.shape,Xtest.shape,ytest.shape
(i) ∈R 1899。
加载数据集之后,训练SVM进行分类:垃圾邮件y = 1 y=1y=1和非垃圾邮件(y=0)。训练完成,分类器得到的训练准确率约为99.8 % 99.8\%99.8%,测试准确率约为98.5 % 98.5\%98.5%。
每个文档已经转换为一个向量,其中1899 18991899对应于词汇表中的1899 18991899个单词。 它们的值为二进制,表示文档中是否存在单词。
clf=svm.SVC(C=0.1,kernel='linear')
clf.fit(X,y)
clf.score(X,y)
2.4 Top Predictors for Spam
为了更好地理解垃圾邮件分类器是如何工作的,可以检查参数,看看分类器认为哪些词最能预测到垃圾邮件。接下来在分类器中找到最大的参数(正数),并显示相应的单词。因此,如果电子邮件包含"保证"、“删除”、"美元"和"价格"等词,它很可能被归类为垃圾邮件。
kw=np.eye(1899)
spam_val=pd.DataFrame({'index':range(1899)})
spam_val['is_spam']=clf.decision_function(kw)
spam_val['is_spam'].describe()
decision=spam_val[spam_val['is_spam']>0.4]
decision