【深度学习系列】全面指南:安装TensorFlow的CPU和GPU版本

本博客旨在为初学者提供一份全面的指南,介绍如何根据个人电脑的配置选择并安装适合的TensorFlow版本。内容涵盖了如何查看电脑显卡型号以确定是安装CPU还是GPU版本的TensorFlow,创建Python虚拟环境,以及使用conda命令查找可用的TensorFlow版本。同时,文章还提供了安装过程中可能遇到的问题及其解决方法,确保读者能够顺利完成安装过程,并开始他们的机器学习或深度学习项目。

目录

一、安装anaconda

二、tensorflow安装cpu版本和gpu版本的区别

三、确定本电脑tensorflow安装cpu版本还是GPU版本

(一)查看显卡型号的步骤

(二) 点击性能

(三) 找到GPU,查看其型号

 (四)查看显卡的计算能力

 四、Tensorflow与Python、CUDA、cuDNN的版本对应表

五、安装CPU版本的tensorflow 

(一)创建虚拟环境

(二)查看虚拟环境

(三) 进入/激活虚拟环境

(四) 安装cpu版本的tensorflow

(五) 在jupyter中添加虚拟环境tensorflow-2.10.0的内核

六、使用conda search命令来查看所有可用的TensorFlow版本

 七、安装GPU版本的tensorflow

八、可能出现的报错

报错一:

出现报错一的原因: 

报错一的解决方法(切换镜像源)

 报错二及解决方法:

报错三及解决方案:

 报错四及解决方案:

报错五及解决方案:

一、安装anaconda

Anaconda | The Operating System for AI

anaconda想必大家都很熟悉了,就不在这里过多陈述。

二、tensorflow安装cpu版本和gpu版本的区别

TensorFlow 的 CPU 版本适用于普通计算机,无需特殊硬件,适合轻量级任务和小规模数据处理。

而 GPU 版本则需要 NVIDIA GPU 及相关驱动支持,能显著提升计算速度,适合大规模数据集和复杂模型的训练。选择版本时,应考虑硬件条件和任务需求。

三、确定本电脑tensorflow安装cpu版本还是GPU版本

下边是我在网上找到的参考:

首先,查看自己电脑显卡的型号。如果显卡是NVIDIA系列的,继续下面步骤;如果显卡不是NVIDIA系列的,直接装CPU版。 

注意:显卡是NVIDIA系列的,同样可以安装cpu版本。

步骤如下:

(一)查看显卡型号的步骤

①在电脑菜单栏里输入“任务管理器”,然后打开

(二) 点击性能

(三) 找到GPU,查看其型号

发现本电脑GPU是NVIDIA系列系列中的Geforce RTX 2060

 (四)查看显卡的计算能力

CUDA GPU | NVIDIA 开发者这个链接,点击自己显卡对应的系列,查看显卡计算能力(computer capability)。如下图,本电脑显卡是 NVIDIA系列系列中的Geforce RTX 2060,其对应的计算能力是7.5。(官方文档中写的75,不知道为啥没有加小数点),故可以安装GPU版本。

 四、Tensorflow与Python、CUDA、cuDNN的版本对应表

在 Windows 环境中从源代码构建  |  TensorFlow (google.cn)

Tensorflow与Python、CUDA、cuDNN的版本对应表_tensorflow版本对应-CSDN博客

五、安装CPU版本的tensorflow 

这里我选择安装tensorflow-2.10.0,对应的python版本是3.7-3.10

(一)创建虚拟环境

打开Anaconda的Prompt命令窗口,在进入Prompt后,默认的是你的base环境。(不明白这里也没事)

为了方便管理,我们在此创建一

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值