本博客旨在为初学者提供一份全面的指南,介绍如何根据个人电脑的配置选择并安装适合的TensorFlow版本。内容涵盖了如何查看电脑显卡型号以确定是安装CPU还是GPU版本的TensorFlow,创建Python虚拟环境,以及使用conda命令查找可用的TensorFlow版本。同时,文章还提供了安装过程中可能遇到的问题及其解决方法,确保读者能够顺利完成安装过程,并开始他们的机器学习或深度学习项目。
目录
三、确定本电脑tensorflow安装cpu版本还是GPU版本
四、Tensorflow与Python、CUDA、cuDNN的版本对应表
(五) 在jupyter中添加虚拟环境tensorflow-2.10.0的内核
六、使用conda search命令来查看所有可用的TensorFlow版本
一、安装anaconda
Anaconda | The Operating System for AI
anaconda想必大家都很熟悉了,就不在这里过多陈述。
二、tensorflow安装cpu版本和gpu版本的区别
TensorFlow 的 CPU 版本适用于普通计算机,无需特殊硬件,适合轻量级任务和小规模数据处理。
而 GPU 版本则需要 NVIDIA GPU 及相关驱动支持,能显著提升计算速度,适合大规模数据集和复杂模型的训练。选择版本时,应考虑硬件条件和任务需求。
三、确定本电脑tensorflow安装cpu版本还是GPU版本
下边是我在网上找到的参考:
首先,查看自己电脑显卡的型号。如果显卡是NVIDIA系列的,继续下面步骤;如果显卡不是NVIDIA系列的,直接装CPU版。
注意:显卡是NVIDIA系列的,同样可以安装cpu版本。
步骤如下:
(一)查看显卡型号的步骤
①在电脑菜单栏里输入“任务管理器”,然后打开
(二) 点击性能
(三) 找到GPU,查看其型号
发现本电脑GPU是NVIDIA系列系列中的Geforce RTX 2060
(四)查看显卡的计算能力
在CUDA GPU | NVIDIA 开发者这个链接,点击自己显卡对应的系列,查看显卡计算能力(computer capability)。如下图,本电脑显卡是 NVIDIA系列系列中的Geforce RTX 2060,其对应的计算能力是7.5。(官方文档中写的75,不知道为啥没有加小数点),故可以安装GPU版本。
四、Tensorflow与Python、CUDA、cuDNN的版本对应表
在 Windows 环境中从源代码构建 | TensorFlow (google.cn)
Tensorflow与Python、CUDA、cuDNN的版本对应表_tensorflow版本对应-CSDN博客
五、安装CPU版本的tensorflow
这里我选择安装tensorflow-2.10.0,对应的python版本是3.7-3.10
(一)创建虚拟环境
打开Anaconda的Prompt命令窗口,在进入Prompt后,默认的是你的base环境。(不明白这里也没事)
为了方便管理,我们在此创建一