安装并配置mujoco

### 安装配置 MuJoCo 模拟环境 #### 准备工作 在 Ubuntu 22.04 上安装 MuJoCo 需要完成一系列依赖项的安装以及必要的路径设置。尽管 `libglew1.5` 已经无法在该操作系统上安装,但这不会影响 MuJoCo 的正常使用。 #### 下载解压 MuJoCo 文件 首先需要获取 MuJoCo 软件包,将其放置在一个合适的目录下。通常建议将文件存放在 `$HOME/.mujoco/` 中[^1]。 ```bash mkdir -p $HOME/.mujoco/ cd $HOME/.mujoco/ wget https://www.roboti.us/download/mujoco210-linux-x86_64.tar.gz tar -xf mujoco210-linux-x86_64.tar.gz ``` #### 设置环境变量 为了使系统能够找到 MuJoCo 库中的二进制文件,需将它们添加到动态链接器路径中。可以通过修改 `.bashrc` 或者直接运行以下命令来实现这一目标: ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin source ~/.bashrc ``` 上述操作确保了 Python 和其他程序可以访问所需的共享库[^2]。 #### 安装 Mujoco-Py 及其依赖 接着按照官方文档说明克隆仓库至本地机器上,通过 pip 命令依次满足项目所需的各种软件需求。 ```bash git clone https://github.com/openai/mujoco-py.git cd mujoco-py pip install -r requirements.txt pip install -r requirements.dev.txt pip3 install -e . --no-cache ``` 这些步骤会帮助构建一个可编辑模式下的 mujocepy 包实例。 #### Gymnasium vs OpenAI Gym 兼容性注意事项 值得注意的是,在选择强化学习框架时需要注意 gymnasium 和 openai gym 对应支持的不同版本号可能带来的兼容性差异问题;因此确认所使用的具体 API 是否被当前环境下已装载好的工具集完全覆盖是非常重要的一步[^3]。 #### 测试安装成功与否 最后验证整个流程是否顺利完成可通过简单脚本测试如下所示: ```python import mujoco_py as mjp print(mjp.__version__) model = mjp.load_model_from_path("/path/to/xml/file.xml") sim = mjp.MjSim(model) viewer = mjp.MjViewer(sim) for _ in range(100): sim.step() viewer.render() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值