实战:自定义时序数据集的预处理与插补

在本节中,我们将以合成的 eICU 数据集为例,演示如何将自定义的医疗时间序列数据预处理为 PyPOTS 框架所需的输入格式,并使用 PyPOTS 进行插补。

1.关于 eICU 数据集

The eICU Collaborative Research Database is a freely available multi-center database for critical care research.
Reference:
Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, and Badawi O. (2018). The eICU Collaborative Research Database: A multi-center critical care database for research. Scientific Data. DOI: 10.1038/sdata.2018.178
Available at: The eICU Collaborative Research Database, a freely available multi-center database for critical care research | Scientific Data

eICU 数据库包含来自多家医院的 ICU 病患监护记录,是医疗时间序列研究的重要开源资源。在本示例中,我们使用经过脱敏和合成的 eICU 数据集,以避免隐私风险,同时保证数据结构与真实医疗数据一致。

2.任务目标

  • 预处理表格格式的医疗时序数据为 PyPOTS 可用格式。
  • 使用 PyPOTS 进行插补并还原数据。
  • 生成可供后续分析或模型训练的数据集。

3.主要步骤

  1. 数据加载
    加载原始时序数据,包括特征、标签和样本标识。

  2. 构建三维张量

    • 将不同样本的特征对齐到统一的时间步长度。
    • 构造三维张量 (n_samples, n_steps, n_features)
  3. 数据插补
    使用 PyPOTS 提供的插补算法对张量中的缺失值进行填充。

  4. 还原 DataFrame 结构
    将插补后的张量转换回 DataFrame 形式,保留样本 ID、时间步、特征和标签。

  5. 结果保存
    将插补结果保存为 .csv 或 .npy 以供后续分析或建模使用。

4.结果说明

执行完以上步骤后,你将得到三个预处理完成的数据集:

  • df_train_imputed:训练集插补结果
  • df_val_imputed:验证集插补结果
  • df_test_imputed:测试集插补结果

5.示例输出检查

通过 .shape 查看数据集维度,确认处理无误:

1. 自定义时序数据集的预处理与插补

import pypots
import numpy as np
import pandas as pd
import tsdb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from benchpots.utils.logging import logger, print_final_dataset_info
from benchpots.utils.missingness import create_missingness # 生成人工缺失值
1.1 数据加载
df = pd.read_csv('attachments/synthetic_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值