在本节中,我们将以合成的 eICU 数据集为例,演示如何将自定义的医疗时间序列数据预处理为 PyPOTS 框架所需的输入格式,并使用 PyPOTS 进行插补。
1.关于 eICU 数据集
The eICU Collaborative Research Database is a freely available multi-center database for critical care research.
Reference:
Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, and Badawi O. (2018). The eICU Collaborative Research Database: A multi-center critical care database for research. Scientific Data. DOI: 10.1038/sdata.2018.178
Available at: The eICU Collaborative Research Database, a freely available multi-center database for critical care research | Scientific Data
eICU 数据库包含来自多家医院的 ICU 病患监护记录,是医疗时间序列研究的重要开源资源。在本示例中,我们使用经过脱敏和合成的 eICU 数据集,以避免隐私风险,同时保证数据结构与真实医疗数据一致。
2.任务目标
- 预处理表格格式的医疗时序数据为 PyPOTS 可用格式。
- 使用 PyPOTS 进行插补并还原数据。
- 生成可供后续分析或模型训练的数据集。
3.主要步骤
-
数据加载
加载原始时序数据,包括特征、标签和样本标识。 -
构建三维张量
- 将不同样本的特征对齐到统一的时间步长度。
- 构造三维张量
(n_samples, n_steps, n_features)
。
-
数据插补
使用 PyPOTS 提供的插补算法对张量中的缺失值进行填充。 -
还原 DataFrame 结构
将插补后的张量转换回 DataFrame 形式,保留样本 ID、时间步、特征和标签。 -
结果保存
将插补结果保存为.csv
或.npy
以供后续分析或建模使用。
4.结果说明
执行完以上步骤后,你将得到三个预处理完成的数据集:
df_train_imputed
:训练集插补结果df_val_imputed
:验证集插补结果df_test_imputed
:测试集插补结果
5.示例输出检查
通过 .shape
查看数据集维度,确认处理无误:
1. 自定义时序数据集的预处理与插补
import pypots
import numpy as np
import pandas as pd
import tsdb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from benchpots.utils.logging import logger, print_final_dataset_info
from benchpots.utils.missingness import create_missingness # 生成人工缺失值
1.1 数据加载
df = pd.read_csv('attachments/synthetic_