详细理解RCNN中的Bounding Box Regression,损失函数,SVM概念

RCNN中的Bounding Box Regression(边界框回归)

在RCNN(Region-based Convolutional Neural Networks)中,Bounding Box Regression(边界框回归)是用来精确定位目标边界框的一个关键步骤。简单来说,边界框回归通过学习来调整候选区域,使它们更准确地包围目标物体。

*边界框回归的使用位置是在特征提取和分类之后,用于精确调整候选区域的边界框。

边界框回归分为两部分(输入边界框,真实边界框)

输入边界框(Initial Bounding Box)

 来源:输入边界框是通过机器生成的方法得到的,例如选择性搜索(Selective Search)、区域提案网络(RPN)等。
 用途:这些边界框作为候选区域,用于后续的特征提取和进一步调整。它们可能包含目标物体,但位置和大小通常不太准确。
 生成方式:自动生成的,算法会在图像中寻找可能包含目标的区域,输出一组候选区域(边界框)。

真实边界框(Ground Truth Bounding Box)

来源:真实边界框是人工标注的,表示图像中目标物体的精确位置和大小。
 用途:在训练过程中,真实边界框作为监督信号,用于指导模型学习如何调整输入边界框,使其更加准确地定位目标物体。
获取方式:通过人工标注,通常由人类专家手动绘制,标注在训练数据集中。

损失函数

Rcnn性能比较

支持向量机(SVM)概念

 1. 目标:
 SVM的目标是找到一个最佳的决策边界(称为超平面),以最大化不同类别之间的间隔(margin),从而将数据点分类到不同的类别中。
 2. 决策边界(超平面):
 在二维空间中,超平面是将数据点分隔开的直线。
 在三维空间中,超平面是将数据点分隔开的平面。
 在更高维的空间中,超平面是一个维度更高的几何对象。
 3. 支持向量:
 支持向量是离决策边界最近的那些数据点。
 它们在确定决策边界的位置和方向方面起关键作用。
 4. 最大化间隔:
 SVM通过最大化类别之间的间隔,确保分类器的鲁棒性,使得模型对新数据具有更好的泛化能力。

*核心思想

分类:
SVM用于分类任务时,通过找到一个能够最大化两类数据间隔的决策边界来区分不同类别。
核技巧(Kernel Trick):
 SVM可以使用核函数将输入数据映射到高维特征空间,在高维空间中找到线性可分的超平面。
 常见的核函数有线性核、多项式核和径向基函数(RBF)核等。

SVM分类在RCNN中的作用: 在RCNN中,SVM用于对每个候选区域进行分类,判断该区域是否包含某个目标物体。

代码为rcnn参考第一篇代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值