题目:
给定一个最大容量为 m 的堆栈,将 n 个数字按 1, 2, 3, ..., n 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 m=5、n=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:m(堆栈最大容量)、n(入栈元素个数)、k(待检查的出栈序列个数)。最后 k 行,每行给出 n 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES
,否则输出NO
。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
注:本人为数据结构的初学者;这道题我费了好几个小时写出来了一种解决方法,感觉很有成就感,所以想记录一下;我也是第一次写博客,如果有什么改进的地方希望大佬们可以指点一下.
代码:
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
int m, n;
//声明队列
typedef struct {
int Data[1000];
int front, rear;
int size;
}queue;
//声明栈
typedef struct {
int data[1000];
int top;
}stack;
//初始化队列