题目:
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
难点:
本题的难点在于怎么去除重复解。
思路:
先对数组进行从小到大排序,然后遍历排序后的数组,每次取出当前元素nums[i],然后判断nums[i]+nums[left]+nums[right]是否为0,这里的left=i+1,right从数组最右边向左移动;如果取出的当前元素大于0,那就不用比较了,因为排过序,后边都不会满足,直接break。并且为了防止重复解,如果下一个取出的nums[i]==nums[i-1]的话,要跳过该元素,最后结束条件是left和right相遇。
解题流程:
1.先进行特判:如果给定的数组为null或元素个数小于3的直接返回null。
2.对数组进行排序:Arrays.sort(nums)
3.遍历该数组:
- 若 nums[i]>0:因为已经排序好,所以后面不可能有三个数加和等于 0,直接返回结果。
- 对于重复元素:跳过,避免出现重复解
- 令左指针 L=i+1,右指针 R=n−1,当 L<R 时,执行循环:
- 当 nums[i]+nums[L]+nums[R]==0,执行循环,判断左界和右界是否和下一位置重复,去除重复解。并同时将 L,R 移到下一位置,寻找新的解。
- 若和大于 0,说明 nums[R] 太大,R 左移。
- 若和小于 0,说明 nums[L] 太小,L 右移。
Java代码:
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
if(nums==null||nums.length<3){
return null;
}
List<List<Integer>> res=new ArrayList<>();
Arrays.sort(nums);
for(int i=0;i<nums.length-2;i++){
if(nums[i]>0){
break;
}
if(i>0&&nums[i]==nums[i-1]){
continue;
}
int l=i+1;
int r=nums.length-1;
while(l<r){
int sum=nums[i]+nums[l]+nums[r];
if(sum==0){
res.add(Arrays.asList(nums[i],nums[l],nums[r]));
while(l<r&&nums[l]==nums[l+1]) l++;
while(l<r&&nums[r]==nums[r-1]) r--;
l++;
r--;
}
else if(sum>0){
r--;
}
else {
l++;
}
}
}
return res;
}
}
时间复杂度:O(n^2)