粒子群优化算法优化BP神经网络

本文介绍了粒子群优化算法如何应用于BP神经网络中,通过调整权重和偏置以提升网络性能。实验使用了粒子群优化来搜索最优参数组合,展示了其在数据集划分、归一化和神经网络结构设计中的应用过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

粒子群优化算法(Particle Swarm Optimization,PSO)灵感来源于鸟群的群体行为。它是一种基于群体智能的优化算法,可用来解决优化问题。粒子群优化算法(PSO)可以用于优化神经网络中的参数,包括神经网络的权重和偏置。在优化BP神经网络中,PSO可以帮助找到更好的权重和偏置的组合,以提高神经网络的性能。在BP神经网络中,PSO主要用于调整网络的权重和偏置。通过PSO算法,可以在权衡探索和利用的过程中,更有效地搜索到神经网络的参数组合,以降低误差、提高分类准确率或者加速网络收敛。

实验结果如下:

部分代码如下:

warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  导入数据
data = xlsread('数据集.xlsx');
%% 计算数据集行数和列数
[num_rows, num_columns] = size(data);
%%  划分训练集和测试集
temp = randperm(num_rows); % 打乱数据集
num_train = round(0.8*num_rows); % 百分之80作为训练集
P_train = data(temp(1: num_train), 1: num_columns-1)';
T_train = data(temp(1: num_train), num_columns)';
M = size(P_train, 2);
P_test = data(temp(num_train: end), 1: num_columns-1)';
T_test = data(temp(num_train: end), num_columns)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train,1);   % 输出层节点数
%%  建立网络
net = newff(p_train, t_train, hiddennum);
.......

This add-in to the PSO Research toolbox (Evers 2009) aims to allow an artificial neural network (ANN or simply NN) to be trained using the Particle Swarm Optimization (PSO) technique (Kennedy, Eberhart et al. 2001). This add-in acts like a bridge or interface between MATLAB’s NN toolbox and the PSO Research Toolbox. In this way, MATLAB’s NN functions can call the NN add-in, which in turn calls the PSO Research toolbox for NN training. This approach to training a NN by PSO treats each PSO particle as one possible solution of weight and bias combinations for the NN (Settles and Rylander ; Rui Mendes 2002; Venayagamoorthy 2003). The PSO particles therefore move about in the search space aiming to minimise the output of the NN performance function. The author acknowledges that there already exists code for PSO training of a NN (Birge 2005), however that code was found to work only with MATLAB version 2005 and older. This NN-addin works with newer versions of MATLAB till versions 2010a. HELPFUL LINKS: 1. This NN add-in only works when used with the PSORT found at, http://www.mathworks.com/matlabcentral/fileexchange/28291-particle-swarm-optimization-research-toolbox. 2. The author acknowledges the modification of code used in an old PSO toolbox for NN training found at http://www.mathworks.com.au/matlabcentral/fileexchange/7506. 3. User support and contact information for the author of this NN add-in can be found at http://www.tricia-rambharose.com/ ACKNOWLEDGEMENTS The author acknowledges the support of advisors and fellow researchers who supported in various ways to better her understanding of PSO and NN which lead to the creation of this add-in for PSO training of NNs. The acknowledged are as follows: * Dr. Alexander Nikov - Senior lecturer and Head of Usaility Lab, UWI, St. Augustine, Trinidad, W.I. http://www2.sta.uwi.edu/~anikov/ * Dr. Sabine Graf - Assistant Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=sabineg * Dr. Kinshuk - Professor, Athabasca University, Alberta, Canada. http://scis.athabascau.ca/scis/staff/faculty.jsp?id=kinshuk * Members of the iCore group at Athabasca University, Edmonton, Alberta, Canada.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值