时序分解 | Matlab基于GWO-FMD基于灰狼算法优化特征模态分解

时序分解 | Matlab基于GWO-FMD基于灰狼算法优化特征模态分解

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

代码主要功能
该MATLAB代码实现了基于GWO-FMD基于灰狼算法优化特征模态分解方法(GWO-FMD),核心功能包括:

  1. 信号分解:使用FMD(Frequency Modulated Decomposition)算法对一维信号进行自适应分解。
  2. 参数优化:通过GWO(一种优化算法)自动寻找FMD分解的最优滤波器参数和模态数量。
  3. 多选择优化:支持6种不同的目标函数(包络熵、信息熵等)指导优化过程。
  4. 结果可视化:绘制原始信号、优化迭代曲线、参数变化图及分解后的模态分量。
    算法步骤
  5. 数据准备
    • 从Excel文件读取待处理信号(测试数据.xlsx)。
  6. 参数初始化
    • 设置FMD分解参数(频带切割数cutnum、最大迭代次数maxiternum、采样率fs)。
    • 定义优化变量范围(滤波器大小lb/ub、种群规模SearchAgents_no等)。
  7. 目标函数选择
    • 根据value的值选择优化目标(包络熵最小、信息熵最小等)。
  8. GWO优化
    • 调用GWO函数优化滤波器大小和模态数量,最小化目标函数。
  9. 结果输出与可视化
    • 绘制优化过程曲线和参数变化图。
    • 输出最佳参数(滤波器大小、模态数量)。
  10. FMD分解
    • 用优化后的参数执行FMD分解,保存结果到Excel(GWO-FMD分解结果.xlsx)。
    • 绘制分解后的模态分量(plot_imf)。
    技术路线
  11. 信号分解方法:FMD(Frequency Modulated Decomposition)
    • 通过滤波器组和迭代优化将信号分解为多个模态分量(IMF)。
  12. 优化算法:GWO灰狼算法
    • 在给定范围内搜索最优滤波器参数组合。
  13. 目标函数(6种可选):
    • 包络熵(value=1)、信息熵(value=2)、排列熵(value=3)等,用于量化分解质量。

程序设计

完整源码私信回复Matlab基于GWO-FMD基于灰狼算法优化特征模态分解


clc
close all
warning off

%% 选取数据
signal = xlsread('测试数据.xlsx');    % 这里选取Excel测试数据,只需一列即可,其余数据格式请自行替换
plot(signal);
title('原始信号')
set(gcf,'color','w')

%% 设置参数
global cutnum maxiternum fs
cutnum = 5;                           %  频带切割数,可自行设置
maxiternum = 20;                      %  迭代次数,可自行设置
fs = 2e4;                             %  采样频率,可自行设置
lb = [10, 3];                         %  待优化的滤波器大小,模态个数变量下限
ub = [50, cutnum];                    %  待优化的滤波器大小,模态个数变量上限
dim = 2;                              %  优化变量数目
SearchAgents_no = 10;                 %  种群规模
Max_iter = 20;                        %  最大迭代数目
value = 1;
% value=1,目标函数为 包络熵最小
% value=2,目标函数为 信息熵最小
% value=3,目标函数为 排列熵最小
% value=4,目标函数为 样本熵最小
% value=5,目标函数为 能量熵最小
% value=6,目标函数为 包络峭度因子最小
fobj = @(x)getObjValue(x,signal,value); % 调用定义的目标函数

%%  调用GWO函数
[Best_score , Best_pos, Curve, process] = GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);

%%  画适应度函数图
figure
plot(Curve);
title('迭代曲线图')
xlabel('迭代次数');
ylabel('适应度值');
set(gcf,'color','w')

%%  画参数变化图
figure
subplot(1, 2, 1)
plot(process(:,1))
title('参数变化曲线图')
xlabel('迭代次数/次')
ylabel('滤波器大小')

subplot(1, 2, 2)
plot(process(:,2))
title('参数变化曲线图')
xlabel('迭代次数/次')
ylabel('模态个数')
set(gcf,'color','w')


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值