目录
问题5: 已知速度与时间的关系如图所示,求路程与时间的关系。
回顾小学知识
问题1. 圆周率π怎么来的?
远古时期,拿根棍,转一圈画个圆,拿根绳子比一比量一量,二者除一除,发现棍和绳是固定的比例。
所以 l = 2 π r 。
(公元前20世纪,一块古巴比伦石匾清楚地记载了圆周率π=25/8=3.125。)
问题2.圆面积公式,怎么来的?
小学老师说过,我们可以把扇形当三角形,只要分的足够多,拿么误差就会很小。我记忆犹新。
所以 S =π r²
================
番外:抖音的一大争论点: 0.999的循环等不等于1?
我认为:肯定是等于的。
因为 1 - 0.999... = 0
有人要说了,不等于0,等于0.000...1
0.999...是无限循环小数,和=0.333... 一样,是现实世界存在的确切的数。
而所谓的0.000...1,他不是无限循环小数,1到底在第几位也没人知道。换句话说,0.000...1,唯一能确定的,就是他的第1位是0,第2位是0,第n位是0,他的第n+1位也是0,这是不是和0.000的循环没区别。所以1-0.99... = 0。
=========
回到小学知识。
小明匀速跑步,2秒1米。路程S如下,
显然,速度等于0.5,也就是y=0.5x的斜率。
如果确定速度,也能推出路程。
对于t0,因为s=vt,其路程也可以说 等于阴影部分的面积。
现在,我们离开小学知识,离开舒适的 “匀速直线”,来到高中。
小明开始加速运动。
问题3.初始速度为0,每秒速度+1。问:10秒跑多少米?
显然,不能直接s=vt,因为v是一直在均匀变化的。
所以我们可以,分段计算,假设在一段时间内v不变。
如图左所示,分成5段。
我们可以分段计算并相加:
0到2s,速度0,路程0。
2到4秒,速度2,路程4。
4到6秒,速度4,路程8。
6到8秒,速度6,路程12。
8到10秒,速度8,路程16。
总计路程40。
只要分的足够多,拿么误差就会很小。显然无限分下去,在图上看会越来越接近一个三角形。
所以 S =1/2t^2 = 50
也可以通过数理计算,假设分成n份,n无穷大。
那么每段的时间都是10/n。
而速度在不断变大。第1段的速度是10/n,第2段的速度是2*10/n,第i段的速度是i*10/n,第n段的速度是10。
也就是一个等差数列求和,100/n²(1+2+3+...+n)。
所以:
其中,极限:
=========补充==========
番外:自由落体
学到这应该知道 自由落体公式 是怎么来的了吧(不知道的再看一遍问题3)*
从楼上 跳下:
==========================
番外:阿基里斯悖论,人永远也追不上乌龟。
让乌龟在阿基里斯前面1000米处开始和阿基里斯赛跑。若阿基里斯跑了1000米,所用的时间为t,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,他所用的时间为t/10,乌龟仍然前于他10米;当阿基里斯跑完下一个10米时,他所用的时间为t/100,乌龟仍然前于他1米…… 所以永远也无法追上他。
-------------公元前5世纪
意思一样 换个好计算的数字:
乌龟一秒一米,人一秒两米,乌龟先跑10s,问什么时候追上?
小学生都会。2x-20 = x,x = 20。
现在用阿基里斯的思想来解题:
乌龟先跑10s跑了10米,人要追上这10米要用5秒,这5秒乌龟又跑了5米,人要追上这5米又要用2.5秒,这2.5秒乌龟又跑了2.5米,人要追上这2.5米又要用1.25s,这1.25秒乌龟又跑了1.25米,人要追上这1.25米又要用0.625秒,这0.625秒乌龟又跑了0.625米。。。。。。。。。。。。。
似乎永远也算不完(阿基里斯是这样认为的)。
2025年上过一点学的都知道,算的完。
总时长T = 5 + 2.5 + 1.25 +0.625 +....,即
图形:
数理:
两边同时乘以1/2
两式子相减
n趋向无穷大。
(等比无穷级数求和公式,韦达,1593年)
==================================
回到主线。
刚刚的问题3,是根据速度求路程,现在根据路程求速度。
问题4.已知路程与时间的关系如图所示,求速度与时间的关系。
上过高中的都知道,在这里,速度就是函数的斜率,可以直接,开导开导。
求导得y‘ = 2x。所以V=2t。
没问题,但这里有的老师可能只教你求导,没教你为什么。
对于某点的斜率,我们可以切出一段 来计算。还是那句话,只要切的足够小,就够准。
直角三角形求斜边:
求导公式可归纳为:
例题: 使用此公式,推导 sinx 的导数,推导的导数。
问题5: 已知速度与时间的关系如图所示,求路程与时间的关系。
小明,初始速度10米每秒,跑不动了,每秒速度-1,10秒后停下了。请画出路程与速度的函数曲线。
如果是计算总路程,那太简单了,根据上面的经验 一秒算出等于50.(算不出也别学了,洗洗睡吧)。
速度曲线,也就是说 导数 y’ = 10 - x;
谁的导数等于y’ = 10 - x?呢,显然,y=10x的导数等于10,y = 0.5x²的导数等于x。所以不难看出,原函数 y = 10x - 0.5x²。(看不出来怎么办?多导,导多了就知道反过来是什么样了)。
将x=10带人,y=50。
积分说白了就是根据导数求原函数,此题的定积分可写作:
所以程与速度的函数曲线:
牛顿莱布尼茨公式(十七世纪)
例题1:求下图 阴影部分面积
答案:
例题2: 求 y= sinx 在0到π的面积。
答案:
至此,你已经学会了微积分,请记住下列的经典函数。
================
番外:自然对数e
高中经常用:
n = 1 , e = 2
n = 2 ,e = 1.5² = 2.5
n = 10 ,e = 1.1的十次方 = 2.5937
n = 无穷,e = 2.7...
==============
学会微积分,有什么实际应用呢?来道物理题。能给他秒了,说明你会了。
来道初中物理题,测试智商。
温馨提示(做功 W=F S)(浮力F = ρ水 g v排)
应用题:如图所示,我们有一个各边长为 l = 1m 的正立方体,其密度与水相同。将这个物体放入水中,其上表面正好与水面平齐。在理想情况下,下表面有一只手将其托举起,做匀速直线运动。当物体的下表面正好与水面平齐时,即物体运动了距离 l,问:这时手做了多少功(g = 10N/kg)?
分析:
如果没有水的话,这道题非常简单,因为受力平衡,F手 = mg ,所以
W = F手*l = mgl = 1000kg*10N/kg*1m = 10000J
现在有了水F手就不等于mg了,而是F手 = mg - F浮。
初始时因为物体密度和水一样,所以F手 = 0;而最终时刻F手 = mg。
那么F手是怎样变化的呢?
对于向上的位移s(单位m)(范围0到1):
F手 = mg - ρ水 g v排 = mg - ρ水g l² s = 1000kg * 10N/kg - 1000kg/m³ *10N/kg * 1m² * (1-s)
= 10000 - 10000(1-s)
= 10000s (N)
(至此,这道题 可归结为 目录-问题3。 可直接秒 ,W= 5000J)
所以:
=================================
番外:泰勒公式
现有一函数 f(x)长的奇奇怪怪。能不能用p(x)近似的表示f(x)? ,p(x)则由常见的x,x平分,x三次方构成。
1. 对于某点 a。 f(a) = c0。
我们让p(a) = f(a)。所以p(x)=c0。
显然,p(x)不能代表f(x),他们只有在a点处相等
2. a 点之后f(x)会怎么变,变化趋势是什么?
找趋势就要求导,(导数正则增,导数负则减,导小则变化小,导大则变化大)
f '(a) = c1
所以
p(x)变成了 f(x)在a点的切线。(图上看,f函数在增,导数是正的,c1是正的)
重合的部分变多了。
3. 继续下去
f ’’ (x) = c2
p(x)变成了2次函数。(图上看,a处,f函数的增加变慢,导数在变小,导数的导数是负的,c2是负的)
重合的部分又变多了。
4.再继续下去
为了更接近,增加系数
无穷无尽的继续下去会越来越近
所以
火速牢记:
(英国数学家布 鲁克·泰勒,1712年)
----------------------------------------------------------------------
求下面的极限
在0处,泰勒公式
所以 等于1。
-------------------------------------------------------------
只会硬算。
x = 0.1
x - 1 = 10/9 -1 = 1/9