§1.5 极限存在准则与两个重要极限
一、极限存在准则
-
两边夹准则
-
准则 1(数列形式):如果数列 { x n } , { y n } , { z n } \{x_n\},\{y_n\},\{z_n\} {xn},{yn},{zn} 满足:
- 从某项起,即存在 n 0 ∈ N + n_0\in N^{+} n0∈N+ ,当 n > n 0 n>n_0 n>n0 时有 y n ≤ x n ≤ z n y_n\leq x_n\leq z_n yn≤xn≤zn ;
-
lim
n
→
∞
y
n
=
lim
n
→
∞
z
n
=
a
\lim_{n\rightarrow\infty} y_n=\lim_{n\rightarrow\infty} z_n=a
limn→∞yn=limn→∞zn=a ,
则数列 { x n } \{x_n\} {xn} 收敛,且 lim n → ∞ x n = a \lim_{n\rightarrow\infty} x_n=a limn→∞xn=a 。
-
准则 2(函数形式):如果函数 f ( x ) , g ( x ) , h ( x ) f(x), g(x), h(x) f(x),g(x),h(x) 满足:
- 当 x ∈ U ( x 0 ) x\in U(x_0) x∈U(x0) 时有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\leq f(x)\leq h(x) g(x)≤f(x)≤h(x) ;
-
lim
x
→
x
0
g
(
x
)
=
lim
x
→
x
0
h
(
x
)
=
A
\lim_{x\rightarrow x_0} g(x)=\lim_{x\rightarrow x_0} h(x)=A
limx→x0g(x)=limx→x0h(x)=A ,
则 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x)=A limx→x0f(x)=A 。
-
-
单调有界原理
-
(1) 数列的单调性
若数列 { y n } \{y_n\} {yn} 满足 y n < y n + 1 y_n<y_{n+1} yn<yn+1 (或 y n > y n + 1 y_n>y_{n+1} yn>yn+1 ),则称数列 { y n } \{y_n\} {yn} 是单调递增(或单调递减)数列。
例如: { 1 n } , { n n + 1 } , { ( − 1 ) n n } \{\frac{1}{n}\},\{\frac{n}{n+1}\},\{\frac{(-1)^n}{n}\} {n1},{n+1n},{n(−1)n} 。 -
(2) 数列的有界性
若存在 M > 0 M>0 M>0 ,对一切的 n n n 有 ∣ y n ∣ ≤ M |y_n|\leq M ∣yn∣≤M ,则称数列 { y n } \{y_n\} {yn} 有界。 -
(3) 单调有界原理
若数列 { y n } \{y_n\} {yn} 单调有界,则数列 lim n → ∞ y n \lim_{n\rightarrow\infty} y_n limn→∞yn 一定存在。注:由于单调分为单调递增和单调递减,有界包括有上界和有下界,因此,将单调有界原理分解为下面两个:
1 ∘ 1^{\circ} 1∘ 单调递增有上界的数列必有极限;例如: y n = 1 − 1 n y_n=1-\frac{1}{n} yn=1−n1 是单调递增且有上界, lim n → ∞ ( 1 − 1 n ) = 1 \lim_{n\rightarrow\infty}(1-\frac{1}{n})=1 limn→∞(1−n1)=1 ;
2 ∘ 2^{\circ} 2∘ 单调递减有下界的数列必有极限;例如: y n = 1 + 1 n y_n=1+\frac{1}{n} yn=1+n1 是单调递减且有下界, lim n → ∞ ( 1 + 1 n ) = 1 \lim_{n\rightarrow\infty}(1+\frac{1}{n})=1 limn→∞(1+n1)=1 。
例 1:证明数列 2 , 2 + 2 , 2 + 2 + 2 , ⋯ , 2 + 2 + ⋯ + 2 , ⋯ \sqrt{2},\sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2+\sqrt{2}}},\cdots,\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}},\cdots 2,2+2,2+2+2,⋯,2+2+⋯+2,⋯ 收敛,并求极限。
证明:记 y n = 2 + 2 + ⋯ + 2 y_n=\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}} yn=2+2+⋯+2 ,则 y n + 1 = 2 + y n y_{n+1}=\sqrt{2+y_n} yn+1=2+yn 。
由数学归纳法易证数列 { y n } \{y_n\} {yn} 有上界,即 y n < 2 y_n<2 yn<2 ;又由 y n + 1 = 2 + y n y_{n+1}=\sqrt{2+y_n} yn+1=2+yn 知, y n < y n + 1 y_n<y_{n+1} yn<yn+1 ,即数列 { y n } \{y_n\} {yn} 单调递增。
因此,由单调有界原理知,数列 { y n } \{y_n\} {yn} 收敛。
记 lim n → ∞ y n = a \lim_{n\rightarrow\infty} y_n=a limn→∞yn=a ,由 y n + 1 = 2 + y n y_{n+1}=\sqrt{2+y_n} yn+1=2+yn 知, y n + 1 2 = 2 + y n y_{n+1}^2=2+y_n yn+12=2+yn ,等式两边求极限得 a 2 = 2 + a a^2=2+a a2=2+a ,解得 a = 2 , a = − 1 a = 2, a = -1 a=2,a=−1 (舍去,因为 y n > 0 ⇒ a ≥ 0 y_n>0\Rightarrow a\geq 0 yn>0⇒a≥0 ),因此 lim n → ∞ y n = 2 \lim_{n\rightarrow\infty} y_n=2 limn→∞yn=2 。
-
二、两个重要极限
-
lim x → 0 sin x x = 1 \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 limx→0xsinx=1
证明:
先证明 lim x → 0 + sin x x = 1 \lim_{x\rightarrow 0^{+}}\frac{\sin x}{x}=1 limx→0+xsinx=1 。作单位圆,设 ∠ A O B = x ( 0 < x < π 2 ) \angle AOB = x(0<x<\frac{\pi}{2}) ∠AOB=x(0<x<2π) ,过 A A A 作圆的切线交 O B OB OB 的延长线于 D D D ,连接 A B AB AB 。
由图形可知, S △ A O B < S 扇形 A O B < S △ A O D S_{\triangle AOB}<S_{\text{扇形}AOB}<S_{\triangle AOD} S△AOB<S扇形AOB<S△AOD ,即 1 2 sin x × 1 < 1 2 x × 1 2 < 1 2 tan x × 1 \frac{1}{2}\sin x\times 1<\frac{1}{2} x\times 1^2<\frac{1}{2}\tan x\times 1 21sinx×1<21x×12<21tanx×1 ,即 sin x < x < tan x \sin x< x<\tan x sinx<x<tanx ,即 sin x x < 1 \frac{\sin x}{x}<1 xsinx<1 且 sin x x > cos x 1 \frac{\sin x}{x}>\frac{\cos x}{1} xsinx>1cosx ,由迫敛性知 lim x → 0 + sin x x = 1 \lim_{x\rightarrow 0^{+}}\frac{\sin x}{x}=1 limx→0+xsinx=1 。
再证明 lim x → 0 − sin x x = 1 \lim_{x\rightarrow 0^{-}}\frac{\sin x}{x}=1 limx→0−xsinx=1 。
lim x → 0 − sin x x = lim x → 0 − sin ( − x ) − x = 令 − x = t lim t → 0 + sin t t = 1 \lim_{x\rightarrow 0^{-}}\frac{\sin x}{x}=\lim_{x\rightarrow 0^{-}}\frac{\sin(-x)}{-x}\stackrel{令 -x = t}{=}\lim_{t\rightarrow 0^{+}}\frac{\sin t}{t}=1 limx→0−xsinx=limx→0−−xsin(−x)=令−x=tlimt→0+tsint=1 ,因此有 lim x → 0 sin x x = 1 \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 limx→0xsinx=1 。
注:几种常用的变形形式:
( 1 ) lim x → 0 x sin x = 1 (1)\lim_{x\rightarrow 0}\frac{x}{\sin x}=1 (1)limx→0sinxx=1 ;
( 2 ) lim f ( x ) → 0 sin f ( x ) f ( x ) = 1 (2)\lim_{f(x)\rightarrow 0}\frac{\sin f(x)}{f(x)}=1 (2)limf(x)→0f(x)sinf(x)=1 ;
( 3 ) lim f ( x ) → 0 f ( x ) sin f ( x ) = 1 (3)\lim_{f(x)\rightarrow 0}\frac{f(x)}{\sin f(x)}=1 (3)limf(x)→0sinf(x)f(x)=1 。
例 2:计算下列极限
( 1 ) lim x → 0 tan x x (1)\lim_{x\rightarrow 0}\frac{\tan x}{x} (1)limx→0xtanx
( 2 ) lim x → 0 sin k x x (2)\lim_{x\rightarrow 0}\frac{\sin kx}{x} (2)limx→0xsinkx
( 3 ) lim x → 0 sin 2 x sin 3 x (3)\lim_{x\rightarrow 0}\frac{\sin 2x}{\sin 3x} (3)limx→0sin3xsin2x
( 4 ) lim x → 0 1 − cos x x 2 (4)\lim_{x\rightarrow 0}\frac{1 - \cos x}{x^2} (4)limx→0x21−cosx
-
lim n → ∞ ( 1 + 1 n ) n = e \lim_{n\rightarrow\infty}(1+\frac{1}{n})^n=e limn→∞(1+n1)n=e
证明:需要利用二项式定理:
( a + b ) n = C n 0 a n b 0 + C n 1 a n − 1 b + ⋯ + C n k a n − k b k + ⋯ + C n n a 0 b n (a + b)^n = C_n^0 a^n b^0 + C_n^1 a^{n - 1} b+\cdots + C_n^k a^{n - k} b^k+\cdots + C_n^n a^0 b^n (a+b)n=Cn0anb0+Cn1an−1b+⋯+Cnkan−kbk+⋯+Cnna0bn
其中 C n k = n ! k ! ( n − k ) ! C_n^k=\frac{n!}{k!(n - k)!} Cnk=k!(n−k)!n! 。
记 y n = ( 1 + 1 n ) n y_{n}=(1+\frac{1}{n})^{n} yn=(1+n1)n ,则由二项式定理的展开式有
y n = ( 1 + 1 n ) n = 1 + C n 1 1 n + C n 2 1 n 2 + ⋯ + C n k 1 n k + ⋯ + C n n 1 n n y_n=(1+\frac{1}{n})^n=1 + C_n^1\frac{1}{n}+C_n^2 \frac{1}{n^2}+\cdots + C_n^k \frac{1}{n^k}+\cdots + C_n^n \frac{1}{n^n} yn=(1+n1)n=1+Cn1n1+Cn2n21+⋯+Cnknk1+⋯+Cnnnn1
因此
y n = 1 + 1 1 ! ( 1 − 1 n ) + 1 2 ! ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) y_n = 1+\frac{1}{1!}(1-\frac{1}{n})+\frac{1}{2!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdots+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n - 1}{n}) yn=1+1!1(1−n1)+2!1(1−n1)(1−n2)+⋯+n!1(1−n1)(1−n2)⋯(1−nn−1)
y n + 1 = 1 + 1 + 1 2 ! ( 1 − 1 n + 1 ) + 1 3 ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) + ⋯ + y_{n+1}=1 + 1+\frac{1}{2!}(1-\frac{1}{n+1})+\frac{1}{3!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})+\cdots+ yn+1=1+1+2!1(1−n+11)+3!1(1−n+11)(1−n+12)+⋯+
1 n ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n − 1 n + 1 ) + 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n n + 1 ) \frac{1}{n!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots(1-\frac{n - 1}{n+1})+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots(1-\frac{n}{n+1}) n!1(1−n+11)(1−n+12)⋯(1−n+1n−1)+(n+1)!1(1−n+11)(1−n+12)⋯(1−n+1n)
即 y n < y n + 1 y_n<y_{n+1} yn<yn+1 ,即数列 { y n } \{y_n\} {yn} 单调递增;
又
y n < 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! < 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 = 3 − 1 2 n − 1 < 3 ( n ! > 2 n − 1 , n > 2 ) y_n<1 + 1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}<1 + 1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^{n - 1}}=3-\frac{1}{2^{n - 1}}<3(n!>2^{n - 1}, n>2) yn<1+1+2!1+3!1+⋯+n!1<1+1+21+221+⋯+2n−11=3−2n−11<3(n!>2n−1,n>2)
即数列 { y n } \{y_n\} {yn} 有上界,由单调有界原理知数列 { y n } \{y_n\} {yn} 收敛。
由于当 n → ∞ n\rightarrow\infty n→∞ 时,数列 y n = ( 1 + 1 n ) n y_n=(1+\frac{1}{n})^n yn=(1+n1)n 无限接近常数 e e e ,因此 lim n → ∞ ( 1 + 1 n ) n = e \lim_{n\rightarrow\infty}(1+\frac{1}{n})^n=e limn→∞(1+n1)n=e 。
注:
1 ∘ lim n → ∞ ( 1 + 1 n + 1 ) n = lim n → ∞ ( 1 + 1 n + 1 ) n + 1 / lim n → ∞ ( 1 + 1 n + 1 ) = e 1^{\circ}\lim_{n\rightarrow\infty}(1+\frac{1}{n+1})^n=\lim_{n\rightarrow\infty}(1+\frac{1}{n+1})^{n+1}/\lim_{n\rightarrow\infty}(1+\frac{1}{n+1})=e 1∘limn→∞(1+n+11)n=limn→∞(1+n+11)n+1/limn→∞(1+n+11)=e ;
2 ∘ lim n → ∞ ( 1 + 1 n ) n + 1 = lim n → ∞ ( 1 + 1 n ) n × lim n → ∞ ( 1 + 1 n + 1 ) = e 2^{\circ}\lim_{n\rightarrow\infty}(1+\frac{1}{n})^{n+1}=\lim_{n\rightarrow\infty}(1+\frac{1}{n})^n\times\lim_{n\rightarrow\infty}(1+\frac{1}{n+1})=e 2∘limn→∞(1+n1)n+1=limn→∞(1+n1)n×limn→∞(1+n+11)=e ;
3 ∘ 3^{\circ} 3∘ 推广到一般函数: lim x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e limx→∞(1+x1)x=e 。
证明:
先证明 lim x → + ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow+\infty}(1+\frac{1}{x})^x=e limx→+∞(1+x1)x=e 。
对 ∀ x > 1 \forall x>1 ∀x>1 有 [ x ] ≤ x < [ x ] + 1 [x]\leq x<[x]+1 [x]≤x<[x]+1 ,即 1 1 + [ x ] < 1 x ≤ 1 [ x ] \frac{1}{1+[x]}<\frac{1}{x}\leq\frac{1}{[x]} 1+[x]1<x1≤[x]1 ,即 1 + 1 1 + [ x ] < 1 + 1 x ≤ 1 + 1 [ x ] 1+\frac{1}{1+[x]}<1+\frac{1}{x}\leq 1+\frac{1}{[x]} 1+1+[x]1<1+x1≤1+[x]1 ,即
( 1 + 1 1 + [ x ] ) [ x ] < ( 1 + 1 x ) x < ( 1 + 1 [ x ] ) [ x ] + 1 (1+\frac{1}{1+[x]})^{[x]}<(1+\frac{1}{x})^x<(1+\frac{1}{[x]})^{[x]+1} (1+1+[x]1)[x]<(1+x1)x<(1+[x]1)[x]+1 ,记 [ x ] = n [x]=n [x]=n ,即
( 1 + 1 1 + n ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 (1+\frac{1}{1+n})^n<(1+\frac{1}{x})^x<(1+\frac{1}{n})^{n+1} (1+1+n1)n<(1+x1)x<(1+n1)n+1 ,由迫敛性知: lim x → + ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow+\infty}(1+\frac{1}{x})^x=e limx→+∞(1+x1)x=e 。
再证明 lim x → − ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow-\infty}(1+\frac{1}{x})^x=e limx→−∞(1+x1)x=e 。
lim x → ∞ ( 1 + 1 x ) x = 令 t = − x lim t → + ∞ ( 1 − 1 t ) − t = lim t → + ∞ ( 1 + 1 t − 1 ) t − 1 × ( 1 + 1 t − 1 ) = e \lim_{x\rightarrow\infty}(1+\frac{1}{x})^x\stackrel{令_{t=-x}}{=}\lim_{t\rightarrow+\infty}(1-\frac{1}{t})^{-t}=\lim_{t\rightarrow+\infty}(1+\frac{1}{t-1})^{t-1}\times(1+\frac{1}{t-1})=e limx→∞(1+x1)x=令t=−xlimt→+∞(1−t1)−t=limt→+∞(1+t−11)t−1×(1+t−11)=e
因此有 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e limx→∞(1+x1)x=e 。
注:几种常用的变形形式:
( 1 ) lim x → ∞ ( 1 + x ) 1 x = e (1)\lim_{x\rightarrow\infty}(1+x)^{\frac{1}{x}}=e (1)limx→∞(1+x)x1=e ;
( 2 ) lim f ( x ) → ∞ ( 1 + 1 f ( x ) ) f ( x ) = e (2)\lim_{f(x)\rightarrow\infty}(1+\frac{1}{f(x)})^{f(x)}=e (2)limf(x)→∞(1+f(x)1)f(x)=e ;
( 3 ) lim f ( x ) → 0 ( 1 + f ( x ) ) 1 f ( x ) = e (3)\lim_{f(x)\rightarrow 0}(1+f(x))^{\frac{1}{f(x)}}=e (3)limf(x)→0(1+f(x))f(x)1=e 。
例 3:求下列极限
( 1 ) lim x → ∞ ( 1 + 2 x ) x (1)\lim_{x\rightarrow\infty}(1+\frac{2}{x})^x (1)limx→∞(1+x2)x
( 2 ) lim x → ∞ ( 1 − 2 x ) x 2 − 1 (2)\lim_{x\rightarrow\infty}(1-\frac{2}{x})^{\frac{x}{2}-1} (2)limx→∞(1−x2)2x−1
( 3 ) lim x → 0 ( 1 + 2 x ) 1 x (3)\lim_{x\rightarrow 0}(1+2x)^{\frac{1}{x}} (3)limx→0(1+2x)x1
( 4 ) lim x → ∞ ( x − 1 x + 1 ) x (4)\lim_{x\rightarrow\infty}(\frac{x - 1}{x + 1})^x (4)limx→∞(x+1x−1)x
( 5 ) lim x → ∞ ( x 2 x 2 − 1 ) x (5)\lim_{x\rightarrow\infty}(\frac{x^2}{x^2 - 1})^x (5)limx→∞(x2−1x2)x
( 6 ) lim x → 0 ln ( 1 + 2 x ) sin 3 x (6)\lim_{x\rightarrow 0}\frac{\ln(1 + 2x)}{\sin 3x} (6)limx→0sin3xln(1+2x)
( 7 ) lim n → ∞ n [ ln ( n + 2 ) − ln n ] (7)\lim_{n\rightarrow\infty} n[\ln(n + 2)-\ln n] (7)limn→∞n[ln(n+2)−lnn]
作业
1.计算下列极限
lim x → 0 sin w x x \lim_{x\rightarrow 0}\frac{\sin wx}{x} limx→0xsinwx
lim x → 0 tan 3 x x \lim_{x\rightarrow 0}\frac{\tan 3x}{x} limx→0xtan3x
lim x → 0 sin 2 x sin 5 x \lim_{x\rightarrow 0}\frac{\sin 2x}{\sin 5x} limx→0sin5xsin2x
lim x → 0 x cot x \lim_{x\rightarrow 0} x\cot x limx→0xcotx
lim x → 0 1 − cos 2 x x sin x \lim_{x\rightarrow 0}\frac{1 - \cos 2x}{x\sin x} limx→0xsinx1−cos2x
lim x → 0 2 n sin x 2 n \lim_{x\rightarrow 0} 2^n\sin\frac{x}{2^n} limx→02nsin2nx
2.计算下列极限
lim x → 0 ( 1 − x ) 1 x \lim_{x\rightarrow 0}(1 - x)^{\frac{1}{x}} limx→0(1−x)x1
lim x → 0 ( 1 + 2 x ) 1 x \lim_{x\rightarrow 0}(1 + 2x)^{\frac{1}{x}} limx→0(1+2x)x1
lim x → ∞ ( 1 + x x ) 2 x \lim_{x\rightarrow\infty}(\frac{1 + x}{x})^{2x} limx→∞(x1+x)2x
lim x → ∞ ( 1 − 1 x ) k x \lim_{x\rightarrow\infty}(1-\frac{1}{x})^{kx} limx→∞(1−x1)kx
参考答案
1.
2.