说到线代,我真的很想吐槽一下我们老师上课,没有引入,没有解释,直接教公式,问了就说“记住记住”,不得已我上网查到了MIT的公益网课(文章末尾回帖网址),个人认为很不错,就是纯英的对英语不好的童鞋不太友好>_<¦¦¦
目录
举个例子:
这是一个二元一次方程组,我们可以用两种方式去表示这个方程组,一个是行图像,一个是列图象。
行图像: 两条直线相交于一点,这个点就是方程组的解。我们可以轻易的写出这个方程组的矩阵形式,A是系数矩阵,X是未知数向量(这里有两个未知数,未知数可以增加),b是也是一个向量。
这是一个很容易理解的图,我们先找出2x-y=0在xy轴上的所有解,再找出-x+2y=3在xy轴上的所有解,两线相交的点就数解。下面我们进入列图像。
列图象:
(-1,2),(2,-1),(0,3)都是向量,我们通过画出列图像来找出正确的线性组合得到x和y,以此得出方程组的解。
![]()
图2
图2是把两个方程式合在一起考虑,等号前面的是x乘以向量矩阵加上y乘以向量矩阵,包含了矩阵A的各列 ,等号右侧还是b。我们的目的是怎要将等号前的两个向量正确组合,从而得到向量b。
通过上面的例子,我们了解到了行图像和列图象的含义,当然,列图象是我们理解和学习的重点。列图象,也可以说是列的线性组合,对于上面的例子,如果我们不考虑右侧向量,那么对于x和y取不同的值,就会得出不同的线性组合,也就是任意的右侧向量。这是以后的思考。
2x2的方程组很好画图,下面我们再举一个3x3的方程组:
这是一个三元一次方程组,我们再次用行图像和列图象表示它。
行图像:
我们可以把系数矩阵A和矩阵b写出来,但因为有三个未知数,所以行图像就变成了xyz轴,每一个方程式代表一个平面,我们要求的解就是三个平面的交点。
(三个平面画的不准确)
我们可以看出,当未知数变成三个的时候,行图像不再好用,且不直观,若未知数更多,我们将无法作图求解。
列图象:
col1是向量(2,-1,0),col2是向量(-1,2,3),col3是向量(0,-1,4),通过线性组合我们可以轻易的得出结果,x=0,y=0,z=1。
b
这个方程组很特殊,col3=b,所以很容易求出解。但不是所有的列图象都可以找到b。现在我们考虑一个问题,对于任意的b我们是否都能求出方程组的解,即对于任意b,我们可以解决AX=b。如果三个向量在同一平面上,则我们找到的组合必定在这个平面内,若b不再这个平面内,则无解。
方程组的矩阵形式:Ax=b,矩阵A乘以向量x。所以我们怎们用矩阵乘以向量。
例子:
方法1:是取1个第一列,2个第二列,相乘再相加得到结果,就和列图像的理解一样。
方法2:是一次取一行,去第一行乘以向量(点乘),去第二行乘以向量。
相对来说,第一种方法更好理解,可以理解为A的各列的线性组合。
总结:行图像和列图象在多个未知数的情况下均无法绘图理解,但列图像更加清晰直观的解释了方程组的含义。Ax=b,A各列的线性组合。
下面是视频里链接!!!