matlab评价模型、层次分析法 AHP 模型

本文介绍了在MATLAB中运用层次分析法(AHP)构建动态社会公共卫生与环境评估模型的过程,包括计算一致性指标CI和比率CR,并展示了个体评估中的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab

by lqx

评价模型

层次分析法 AHP 模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%动态社会公共卫生与环境评估层次分析模型
a=[1 5 3;1/5 1 1/3;1/3 3 1];
[x,y]=eig(a);
eigenvalue=diag(y);
lamda=eigenvalue(1); %矩阵 a 的最大特征值
ci1=(lamda-3)/2 %一致性指标 CI
cr1=ci1/0.52 %一致性比率 CR,如果小于 0.1,则通过一致性检验。
w1=x(:,1)/sum(x(:,1)) %相应的特征向量 W1

在这里插入图片描述
在这里插入图片描述

%个体评估层次分析法
a=[1 2 2 3;1/2 1 2 5;1/2 1/2 1 4;1/3 1/5 1/4 1];
[x,y]=eig(a);
eigenvalue=diag(y);
lamda=eigenvalue(1); %矩阵 a 的最大特征值
ci1=(lamda-4)/3 %一致性指标 CI
cr1=ci1/0.89 %一致性比率 CR,如果小于 0.1,则通过一致性检验。
w1=x(:,1)/sum(x(:,1)) %相应的特征向量 W1
b1=[1,1,1,4,1;1,1,2,4,1;1,1/2,1,5,3;1/4,1/4,1/5,1,1/3;1,1,1/3,3,1];
[x,y]=eig(b1);
eigenvalue=diag(y);
lamda1=eigenvalue(1);
ci2=(lamda1-5)/4
cr2=ci2/1.12
w2=x(:,1)/sum(x(:,1))
b2=[1 3 3 3;1/3 1 2 3;1/3 1/2 1 2;1/3 1/3 1/2 1];
[x,y]=eig(b2);
eigenvalue=diag(y);
lamda2=eigenvalue(1);
ci3=(lamda2-4)/3
cr3=ci3/0.89
w3=x(:,1)/sum(x(:,1))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值