matlab评价模型、因子分析算法

本文介绍了如何在Matlab中使用因子分析算法对数据集进行处理,包括计算相关系数矩阵,求解特征值和特征向量,以及执行主成分分析(PCA)。作者通过示例展示了如何提取变量的相关性并进行旋转因子以优化解释度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab

by lqx

评价模型

因子分析算法

在这里插入图片描述
在这里插入图片描述

% 生成随机数据
data = randn(100, 4); % 假设有100个样本和4个变量

% 计算相关系数矩阵
R = corrcoef(data);

% 显示相关系数矩阵
disp('相关系数矩阵:');
disp(R);
%结果展示
相关系数矩阵:
    1.0000   -0.0104   -0.0331    0.0328
   -0.0104    1.0000   -0.0498    0.1113
   -0.0331   -0.0498    1.0000   -0.1102
    0.0328    0.1113   -0.1102    1.0000

在这里插入图片描述

% 相关系数矩阵 R
R = [1.00, 0.75, 0.50;
     0.75, 1.00, 0.25;
     0.50, 0.25, 1.00];

% 求解特征值和特征向量
[V, D] = eig(R);

% 显示特征值
disp('特征值:');
disp(diag(D));

% 显示特征向量
disp('特征向量:');
disp(V);
%结果展示
特征值:
    0.1995
    0.7722
    2.0283

特征向量:
    0.7431    0.1214    0.6581
   -0.6108    0.5248    0.5929
   -0.2734   -0.8425    0.4641

在这里插入图片描述

r=[1 -1/3 2/3;-1/3 1 0;2/3 0 1];
[vec,val,con]=pcacov(r);
num=2;
f1=repmat(sign(sum(vec)),size(vec,1),1);
vec=vec.*f1;
f2=repmat(sqrt(val)',size(vec,1),1);
a=vec.*f2
[b,t]=rotatefactors(a(:,1:num),'method', 'varimax')
%结果展示
a =

    0.9342         0    0.3568
   -0.4178    0.8944    0.1596
    0.8355    0.4472   -0.3192

b =

    0.8706   -0.3386
   -0.0651    0.9850
    0.9408    0.1139

t =

    0.9320   -0.3625
    0.3625    0.9320

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值