以下单纯自己做一下学习记录。
bfs主要用于路径问题。(一种是从A到出发是否存在到达B的路径。另一种是
从A出发到达B的最短路径。)
步骤:
起始:将起点放入队列中。
扩散:从队列中取出队头的结点,将他的相邻结点放入队列,不断重复这一步。
终止:当队列为空的时,说明我们遍历了所有的结点,将整个图都搜索了一遍。
至于为什么需要队列:
我们需要一层一层的去遍历所有的结点,那么相邻结点的访问顺序如何确定呢?
因此我们就需要一个数据结构去存储和操作,需要使得先遍历到的结点先被存储,
知道当前层都被存储之后,按照存储的先后顺序,先被存储的结点也会被先取出来,
继续遍历他的子节点--->故需要一种特点为先进先出的数据结构。
模板题:
acwing 走迷宫
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int n,m;
int g[N][N];
int dist[N][N];//distance 距离
typedef pair<int,int> PII;//用来存储坐标
queue<PII> q;
int dx[] = {-1,0,1,0};
int dy[] = {0,1,0,-1};//遍历的方向是 上 右 下 左
int bfs(int x1, int y1)
{
memset(dist,-1, sizeof dist);
q.push({x1,y1});
dist[x1][y1] = 0;
while(!q.empty())
{
auto t = q.front();//取出队头(auto编译器自动识别t的类型)
q.pop();
for(int i = 0; i < 4; i ++)//四连通
{
int a = t.first + dx[i], b = t.second + dy[i];
if(a < 1 || a > n || b < 1 || b > m)continue;//越界
if(g[a][b] != 0)continue;
if(dist[a][b] > 0)continue;//初始化距离全为0,不为0表示已经走过。
q.push({a,b});
dist[a][b] = dist[t.first][t.second] + 1;
}
}
return dist[n][m];
}
int main()
{
cin>>n>>m;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
cin>>g[i][j];
}
int res = bfs(1,1);
cout<<res;
return 0;
}
洛谷:P1746离开中山路
#include <bits/stdc++.h>
using namespace std;
const int N = 1005;
char g[N][N];
int dist[N][N];
int x1, yy, x2, y2;
int n;
typedef pair<int,int> PII;
queue<PII> q;
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};
int bfs(int x1, int yy)
{
memset(dist, -1, sizeof dist);
q.push({x1,yy});
dist[x1][yy] = 0;
while(!q.empty())
{
auto t = q.front();
q.pop();
for(int i = 0; i < 4; i++)
{
int a = t.first + dx[i],b = t.second + dy[i];
if(a < 1 || a > n || b < 1 || b > n)continue;
if(g[a][b] != '0')continue;
if(dist[a][b] >= 0)continue;
q.push({a,b});
dist[a][b] = dist[t.first][t.second] + 1;
}
}
return dist[x2][y2];
}
int main()
{
cin>>n;
for(int i = 1; i <= n; i++)
scanf("%s",g[i] + 1);
cin>>x1>>yy>>x2>>y2;
int res = bfs(x1,yy);
cout<<res;
return 0;
}