- 博客(9)
- 收藏
- 关注
原创 ACmix
卷积与自注意力是表征学习中的两大强力技术,通常被视为彼此独立的平行方法。本文揭示二者存在深刻的内在关联——这两种范式的核心计算实际上是通过相同操作完成的。具体而言,我们首先论证传统k×k卷积可分解为k²个独立1×1卷积,再通过位移与求和操作实现;继而将自注意力模块中查询、键、值的投影解释为多个1×1卷积,后接注意力权重计算与特征聚合。因此两个模块的第一阶段都包含相似运算。更重要的是,相较于第二阶段,第一阶段贡献了主导性的计算复杂度(通道尺寸的平方量级)。
2025-07-20 00:46:41
891
原创 ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispectral Object Detection
多光谱图像的有效特征融合在多光谱目标检测中起着关键作用。先前研究已证明使用卷积神经网络进行特征融合的有效性,但由于局部范围特征交互的固有缺陷导致图像错位敏感,这些方法存在性能下降问题。为解决该问题,本研究提出一种双交叉注意力变换器的新型特征融合框架,通过建模全局特征交互并同时捕获跨模态互补信息。该框架通过查询引导的交叉注意力机制增强目标特征的可判别性,从而提升检测性能。然而,堆叠多个变换器块进行特征增强会带来大量参数和高空间复杂度。
2025-07-09 17:02:57
792
原创 AKConv与LDConv
基于卷积运算的神经网络在深度学习领域取得了显著成果,但标准卷积运算存在两个固有缺陷。一方面,卷积运算被限制在局部窗口内,无法捕获其他位置的信息,且其采样形状固定不变。另一方面,卷积核尺寸固定为k×k的正方形结构,参数量往往随尺寸呈平方级增长。显然,不同数据集及不同位置中目标的形状与尺寸存在显著差异。具有固定采样形状和正方形结构的卷积核难以适应变化的目标。
2025-07-07 20:17:17
838
原创 论文导读:DSP期刊(SCI三区) PV-YOLO:基于YOLOv8改进的轻量级行人和车辆检测
随着城市交通事故频发,快速精准地检测行人及车辆目标已成为智能辅助驾驶系统的关键技术之一。为满足智能设备高效轻量化的需求,本文基于YOLOv8n模型提出一种轻量化行人车辆检测模型PV-YOLO。在所提出的模型中,感受野注意力卷积(RFAConv)因其目标特征提取能力被选作主干网络,颈部结构采用双向特征金字塔网络(BiFPN)替代原始路径聚合网络(PANet)以简化特征融合流程。此外,模型引入了轻量化检测头以降低计算负担并提升整体检测精度。针对远距离小目标,专门设计了小目标检测层以提高识别准确率。
2025-06-29 12:41:22
954
原创 Ssh连接Linux服务器零基础教学
输入名称与主机号后即可连接。ps:如果是内网ip,计算机需要连接内网才能实现Ssh连接。该步骤可以帮助恢复因为不稳定因素导致的todesk断连。在重启服务器后,我们应该及时查询服务器ip是否变化并且重新启动Ssh服务,以备不时之需。安装完成后,我们需要连接服务器的IP地址,作为主机输入。在Ssh中,我们可以当作正常的服务器终端,输入Linux指令使用。连接成功后,会秒跳出认证界面,依次输入服务器用户名及密码即可。在服务器终端输入(ifconfig),即可获得。出现sshd时表明成功。完事,goodbye!
2025-01-30 00:01:12
221
原创 零基础也能Linux Ubuntu20.04版本安装CUDA和cuDNN,我教你!
科普:vi文本编译器中:进入时默认是命令行模式就是只能选择在哪个地方开始修改,按【i】键后从当前光标位置进入插入模式(可编辑,不可移动上下键连鼠标滑轮都不能动!因为我安装的是CUDA-11.7版本所以选择更多版本里的⬇(ps:这里需要注册登录邮箱下载。这张图是后面补的,(base)在安装完anaconda后才会出现,这里不用管他。注:这里是以管理员身份运行(sudo),所以需要输入用户的密码。注:这里是以管理员身份运行(sudo),所以需要输入用户的密码。安装好CUDA后,需要添加CUDA的环境变量。
2024-10-18 20:32:19
3130
2
原创 运行MMD benchmark.py时报错:AttributeError: ‘DistributedDataParallel‘ object has no attribute ‘test_step‘
修改后的代码截图,注释为之前未改动的代码。的程序中第222行的。
2024-10-13 19:38:47
480
原创 yolov6n或s模型训练时dfl_loss一直为0的问题
简单来说,就是yolov6的s和n模型默认不使用dfl_loss。这时候(以无训练权重的yolov6s模型举例)只需要修改yolov6s.py里的第32行和第33行改为下图所示即可,其余同理。本文仅供学习参考,如有侵权,立即删除。
2024-10-05 11:57:37
560
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人