
llm
文章平均质量分 74
大语言模型的应用
橙意满满的西瓜大侠
一个普通学生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MCP入门
mcp(model context protocol,模型上下文协议)标准化协议:让大模型用统一的方式来调用工具,是llm和工具之间的桥梁A2A:Agent-to-Agent协议。原创 2025-05-01 12:26:52 · 791 阅读 · 0 评论 -
langchain连接知识库
或者 pip install "langchain-chatchat[xinference]" -U(扩展安装,不仅安装 langchain-chatchat 包及其默认依赖项,还会安装 [xinference] 这个额外的依赖项组中定义的所有依赖项)(如果不设置这个的话,会找不到配置文件,必须到配置文件所在的目录下才可以,即cd hy-tmp/langchain_test/langchain-chatchat/)找到内容/usr/lib/x86_64-linux-gnu/libgomp.so.1。原创 2024-12-01 15:34:57 · 957 阅读 · 0 评论 -
在ubuntu上部署dify
直接到官网复制下载命令即可。原创 2025-03-11 11:29:11 · 424 阅读 · 0 评论 -
Dify/RagFlow+Ollama本地部署deepseek模型(自用)
在vscode打开dify——docker这个文件夹,然后终端执行两条命令。(3)复制模型名称时,检查不要多带了空格,否则会找不到模型,引发404错误。(2)执行程序时,检查一下问题栏有没有**库无法导入的情况!(1)选择Ollama作为模型供应商,填入模型名字和基础URL。这步耗时最久,因为服务器在国外(可开节点试试)且文件较大。(2)刷新一下,并确保模型已开启,然后设置系统推理模型。1、Docker要先运行起来,才能打开dify网页!用vscode把文件打开,最后加上两行。(先复制一份,防止修改失败)原创 2025-02-13 15:51:45 · 1377 阅读 · 1 评论 -
本地部署大模型+anythingllm连接知识库
这样可以通过访问主机的 3000 端口来访问容器内部运行的服务,即在主机浏览器中访问 http://localhost:3000,实际上会访问到容器内的 http://localhost:8080。点开设置,将聊天模式改成查询模式(ai会更基于它查询出来的数据),将向量数据库的最大上下文片段改成6(每次查询,去数据库里取出6个和我们问题相关的片段),文档相似性阈值改成中(查询到的数据和问题相关程度的阈值)rag做的是挑出几个和问题语义相关的单个片段,发给大模型来分析回答,大模型并没有看整本书。原创 2024-11-29 16:44:38 · 3308 阅读 · 0 评论 -
swift和llama factory微调实录
1、下载模型(gemma-2-9b-it)软件依赖:软件下载:模型下载:export MODELSCOPE_CACHE='/hy-tmp' 设置下载路径2、下载swift框架(通过源码安装SWIFT——>可以修改安装包,方便运行训练和推理脚本)cd swift3、启动网页端cd swift4、在网页端设置参数,开始微调。原创 2024-11-21 23:16:53 · 2105 阅读 · 0 评论 -
租用GPU——部署及微调ChatGLM3-6b——实录
CUDA_VISIBLE_DEVICES=0 NCCL_P2P_DISABLE="1" NCCL_IB_DISABLE="1" python inference_hf.py output/checkpoint-3000/ --prompt "类型#裙*版型#显瘦*材质#设置环境变量,指向希望保存的模型文件的路径(如果不设置这个环境变量,ModelScope 会使用默认的缓存路径来存储下载的模型文件)(复制粘贴命令的时候,最好问一下ai,了解每个参数的含义,然后替换该替换的路径)原创 2024-11-12 18:44:05 · 896 阅读 · 0 评论 -
Function Calling大模型函数调用
Function Calling指在使用大语言模型时,模型能够根据用户输入的自然语言指令,自动识别需要调用的外部函数,并将相关参数传递给函数,以实现特定的功能或获取特定的信息。• 理解语义:大模型首先会对用户输入的文本进行深度语义理解,通过其预训练的语言知识和模式识别能力,分析出文本中所蕴含的意图和关键信息,判断是否需要调用函数以及应该调用何种函数。• 匹配函数:在模型内部有一个函数目录或知识库,存储了各种可调用函数的信息,包括函数的功能描述、参数要求等。模型会将解析出的语义与这些函数信息进行匹配,找到最适原创 2025-01-23 22:31:17 · 1633 阅读 · 0 评论 -
CSV数据分析智能工具(基于OpenAI API和streamlit)
一个办法是,规定响应的答案格式是字典,里面的键值表示了是什么样的内容(比如answer对应字符串内容,table表示表格,bar条形图,line折线图,scatter散点图),此时,文件对象在内存中的状态被改变,不再维护之前的文件指针位置。关闭文件后,文件指针并不会回到最开始的位置,文件对象也不再处于可用状态,无法直接获取其指针位置信息。重新打开文件时,文件指针默认会位于文件开头(除非你使用特定的模式打开文件,例如以追加模式。为了防止潜在的安全问题,在使用此功能前,你必须明确表示同意使用,也就是要把。原创 2025-02-06 00:09:16 · 801 阅读 · 0 评论 -
给AI用工具的能力——Agent
因为懂代码知识的是模型。因为 Python 应用场景广泛,从简单的代码执行、文件操作到复杂的网络交互、数据处理等,不同任务所需工具差异很大,所以需要用户灵活配置工具,以满足多样化的 Python 任务需求。func参数赋值为使用工具时调用的函数名或方法名,因为使用agent执行器时,调用的是invoke方法,所以把执行器的invoke方法作为参数传入即可。它可以在模块的顶层定义,不依赖于任何特定的类或对象,是全局范围内可调用的代码单元。方法:与类或对象相关联的函数,定义在类的内部,是类的一部分。原创 2025-02-04 20:36:39 · 1115 阅读 · 0 评论 -
PDF问答工具(基于openai API和streamlit)
【代码】PDF问答工具(基于openai API和streamlit)原创 2025-02-03 23:27:32 · 653 阅读 · 0 评论 -
给AI加知识库
Document Loader文档加载器在 langchain_community. document_loaders 里有很多种文档加载器1、纯文本加载器:TextLoader,纯文本(不包含任何粗体、下划线、字号格式)loader = TextLoader("./demo.txt") # 创建TextLoader实例,参数是文件路径docs = loader.load() # 加载文件内容将文本文件的内容加载到documents列表中。每个文档是一个Document对象,包含文本内容(原创 2025-02-03 18:31:15 · 804 阅读 · 0 评论 -
克隆OpenAI(基于openai API和streamlit)
是 Streamlit 提供的一个用于在应用会话期间存储和共享数据的对象,从底层实现来讲,它的行为类似于 Python 的字典(基于数据结构的灵活性不同、功能侧重点不同以及代码的可读性和维护性,建议将memory和messages分开使用,各自发挥其优势。)创建聊天消息框,并自动选择图标和样式来显示消息内容。将 AI 的回复封装成消息对象,添加到会话状态的。:创建一个聊天输入框,获取用户输入的消息。将用户输入的消息添加到会话状态的。列表中,并在界面上显示该消息。列表中,并在界面上显示该消息。原创 2025-02-02 23:33:34 · 589 阅读 · 0 评论 -
给AI添加记忆
除了自行构建带记忆的对话链之外,langchain还提供了现成可用的链——1、创建链:创建对话需要的模型和记忆,代入ConversationChain里2、使用链:自动将用户输入并入历史消息里。不需要手动加载记忆。自动将上一轮对话中的回答加入历史消息里。即不需要手动存入记忆。3、带提示模板的注意:模板里表示用户输入的变量名必须得是input,表示历史消息的变量名必须得是history。原创 2025-02-02 10:22:42 · 565 阅读 · 0 评论 -
小红书文案生成器(基于openai API和streamlit)
【代码】小红书文案生成器(基于openai API和streamlit)原创 2025-02-01 16:49:07 · 937 阅读 · 0 评论 -
视频脚本生成器(基于openai API和streamlit)
5、如果在使用 Streamlit 的 number_input 函数时仅设置了 min_value 和 max_value,而没有指定 value 参数,那么数字输入框的初始值会默认为 min_value。st.write:会根据输入内容以不同样式显示,如普通文本正常显示,Markdown 文本会进行相应的格式渲染,列表和字典会以表格形式展示。只需要导入这个函数就可以使用其功能,而不需要关心其内部实现细节和相关的导入语句,即不需要再次导入openai相关的库。2、st.title:主标题。原创 2025-01-31 18:02:29 · 623 阅读 · 0 评论 -
AI应用部署——streamlit
上传文件,把真正的项目源代码文件拖进框里(注意不包括venv这种虚拟环境相关的文件)删除文件:进入文件里,点击右上角的三点,注意也需要commit changes。requirements.txt里既包括自己安装过的库,也包括这些库的依赖库。因为streamlit的社区云服务会从Github仓库里拉取代码。如何把项目部署到一个具有公网ip地址的服务器上,让他人看到?更新文件:把同名文件上传即可覆盖。原创 2025-01-31 10:35:02 · 400 阅读 · 0 评论 -
Streamlit入门
Streamlit 是一个用于快速构建数据应用的开源 Python 库,由 Streamlit 公司开发并维护。它极大地简化了从数据脚本到交互式 Web 应用的转化过程,让开发者无需具备前端开发的专业知识,就能轻松创建出美观、实用的交互式应用。Streamlit≈前端框架+后端框架+云服务器。原创 2025-01-31 09:36:25 · 2483 阅读 · 0 评论 -
langchain基础(三)
prompt | model | output_parser 把提示值传给模型,又把模型输出传给解析器。链让我们组合出复杂的流程,通过langchain表达式语言,组件之间的上下游关系也能表现得很清晰明了。提示模板、聊天模型和输出解析器都实现了langchain的runnable接口,(注意:链里聊天模型可以换成语言模型,提示模板和输出解析器也不是必须有的)| 表示把前面组件的输出作为后面组件的输入,也就是“管道操作”。把对多个组件的一系列调用,称为“链”(Chain)。都具有invoke方法(原创 2025-01-28 12:12:13 · 531 阅读 · 0 评论 -
langchain基础(二)
因为给ai学习的问答对示例的格式差不多, 所以可以用模板。1、ChatPromptTemplate用于创建包含系统、用户和AI角色消息的模板(构建聊天提示模板),FewShotChatMessagePromptTemplate用于创建少样本学习的提示模板,它基于多个示例来引导模型生成特定格式的输出。都是from_messages方法构建模板,invoke方法填充变量。from_messages不仅可以接收元组作为消息列表的元素,也接收提示模板作为元素。原创 2025-01-28 11:15:25 · 1152 阅读 · 0 评论 -
langchain基础(一)
模型又可分为语言模型(擅长文本补全,输入和输出都是字符串)和聊天模型(擅长对话,输入时消息列表,输出是一个消息)两大类。以调用openai的聊天模型为例,先安装langchain_openai库。原创 2025-01-26 22:53:13 · 585 阅读 · 0 评论 -
langchain介绍
1、没有记忆,记不住上一次提问2、上下文窗口有限,不能一次喂给它太大的信息量,比如处理大文档就不行3、不擅长做计算(根本不做计算,只是猜测下一个最可能出现的token,用它来回答)1、用python列表来储存之前的消息,在下次提问时把历史对话一块发给AI——有记忆2、将长文档的内容先转换成向量,存储到向量数据库;然后在用户提问后,利用相似性搜索,把和问题相关的段落提取出来,一块发给AI——只接收和问题相关的段落,而不是整个文档。原创 2025-01-26 12:39:47 · 341 阅读 · 0 评论 -
提示工程的实际应用——牛刀小试
你是小红书爆款写作专家,请你遵循以下步骤进行创作:首先产出5个标题(包含适当的emoji表情),然后产出1段正文(每一个段落包含适当的emoji表情,文末有适当的tag标签)。标题字数在20个字以内,正文字数在800字以内,并且按以下技巧进行创作。一、标题创作技巧1. 采用二极管标题法进行创作1.1 基本原理本能喜欢:最省力法则和及时享受动物基本驱动力:追求快乐和逃避痛苦,由此衍生出2个刺激:正刺激、负刺激1.2 标题公式正面刺激:产品/方法+只需1秒(短期)+便可开挂(逆天效果)原创 2025-01-26 10:35:03 · 308 阅读 · 0 评论 -
提示词工程
提示:输入给AI的问题或指令好的提示能极大地提高AI的理解和执行的效率,让AI提供更准确和有用的回答。提示工程(Prompt Engineering):研究如何写出好的提示零样本:不给AI任何回应示范小样本:给AI几个回答,作为参考的例子言简意赅,不要啰嗦空洞不严谨。原创 2025-01-25 18:07:55 · 1132 阅读 · 0 评论 -
调用deepseek API
(例如,全局环境、虚拟环境等),而你在一个没有安装openai包的环境中运行代码。检查并激活正确的环境,然后再次尝试运行上述安装命令。2、创建API key(注意:复制保存好API key,因为出于安全原因,你将无法通过 API keys 管理界面再次查看它)设置不正确,可以通过左下角的状态栏找到当前选择的Python解释器,点击它可以切换到包含openai包的正确环境。pip show openai +运行调用api的.py文件。3、可用性测试(简单调用api)把终端的输出发给通义千问分析,原创 2025-01-23 18:15:00 · 7062 阅读 · 0 评论 -
API基础(下)
基于token数量(100个token≈75个单词)计费,toekn数*token单价不仅提示token要计费,回应token也要计费。原创 2025-01-25 13:44:31 · 1046 阅读 · 0 评论 -
API基础(上)
API(Application Programming Interface,应用程序编程接口)定义了两个软件程序之间的服务合约,即双方是如何使用请求和响应来进行通讯的,就像是“如何与服务对话的说明书”。绝大多数API是基于HTTP协议的。我们的代码程序就是客户端,把给ai的提示放到请求内容里,发送给服务端(比如open ai的服务器),得到对方的响应(包含ai的回复)一个请求-响应的例子如下:为了方便用户使用ai服务,大模型公司在API的基础上封装了相应的Python库。原创 2025-01-25 10:19:59 · 516 阅读 · 0 评论 -
LLM基础知识
代替你的不是ai,而是会使用ai的人。而在这之上还有会打造ai的人。原创 2025-01-24 22:37:19 · 445 阅读 · 0 评论