力扣hot100——73.矩阵置零

题目链接:73. 矩阵置零 - 力扣(LeetCode)
解题思路: 创建一个vector记录要置零的行号和列号
解题过程: 遍历两次矩阵,第一次记录值为0的元素的行和列,第二次将对应的行和列置零

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        vector<pair<int,int>> zero;
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[0].size();j++){
	            //记录元素为0的行号和列号
                if(matrix[i][j]==0) zero.push_back({i,j});
            }
        }
        for(int i=0;i<zero.size();i++){
            int x=zero[i].first;
            int y=zero[i].second;
            //置零
            for(int j=0;j<matrix.size();j++){
                matrix[j][y]=0;
            }
            for(int k=0;k<matrix[0].size();k++){
                matrix[x][k]=0;
            }
        }
    }
};
  • 时间复杂度:O(n*m)
  • 空间复杂度:O(k) k为值为0的元素个数

优化:空间复杂度为常数

解题过程: 首先用两个布尔变量记录第一行和第一列是否有为0的元素,然后遍历整个矩阵,将值为0的元素所对应的第一行和第一列的元素置为0,然后遍历矩阵,根据第一行和第一列的元素是否为0将对应的行和列置零。

class Solution
{
public:
    void setZeroes(vector<vector<int>> &matrix)
    {
        bool row_flag = false, col_flag = false;
        //第一行是否有零
        for (int i = 0; i < matrix.size(); i++)
        {
            if (matrix[i][0] == 0) row_flag = true;
        }
        //第一列是否有零
        for (int i = 0; i < matrix[0].size(); i++)
        {
            if (matrix[0][i] == 0) col_flag = true;
        }
        //把第一行和第一列作为标志位
        for (int i = 1; i < matrix.size(); i++)
        {
            for (int j = 1; j < matrix[0].size(); j++)
            {
                if (matrix[i][j] == 0)
                {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }
        //置零
        //注意遍历从1开始,防止第一行和列后置零的元素干扰
        for (int i = 1; i < matrix.size(); i++)
        {
            for (int j = 1; j < matrix[0].size(); j++)
            {
                    if (matrix[i][0] == 0 || matrix[0][j] == 0)
                    matrix[i][j] = 0;
            }
        }
        //置零
        if (row_flag)
        {
            for (int i = 0; i < matrix.size(); i++)
            {
                matrix[i][0] = 0;
            }
        }
        if (col_flag)
        {
            for (int i = 0; i < matrix[0].size(); i++)
            {
                matrix[0][i] = 0;
            }
        }
    }
};
  • 时间复杂度:O(n*m),遍历整个矩阵
  • 空间复杂度:O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值