一、介绍
1、分治法
具体操作是把原问题分为k个规模较小的子问题,对k个子问题分别求解,如果子问题的规模仍然不够小,则再划分为k个子问题。 如此递归地进行下去,直到问题规模足够小,很容易求出其解为止。
分治法的思想,几乎就是递归的过程。
2、 应用场景
平衡子问题:子问题的规模大致相同。
独立子问题:子问题之间相互独立。
3、 解题步骤
1、分解:把问题分解成独立的子问题
2、解决:解决递归子问题
3、合并:把子问题的结果合并成原问题的解
二、具体应用
1、汉诺塔
问题描述:
有三根柱子 A、B 和 C ,以及一堆大小不同的盘子,这些盘子最初都叠放在柱子 A 上,按照从大到小的顺序。任务是将这堆盘子移动到柱子 C 上,同时保持每根柱子上的盘子顺序不变,即大盘子始终在小盘子下面
问:最少要移动多少次?
输入:输入两个正整数,一个是n(n <=15), 表示要移动的盘子数,一个是m,表示在最少移动步骤的第m步
解决思路:
1、将 n-1 个盘子从柱子 A 借助柱子 C 移动到柱子 B
2、将最大的盘子(第 n 个盘子)从柱子 A 移动到柱子 C
3、将 n-1 个盘子从柱子 B 借助柱子 A 移动到柱子 C
#include <iostream>
using namespace std;
int sum = 0,m;
// 递归函数来解决汉诺塔问题
void hanoi(int n, char source, char target, char auxiliary) {
if (n == 1) {
sum++;
if(sum==m)
cout << "Move disk 1 from " << source << " to " << target << endl;
}
else{
hanoi(n - 1, source, auxiliary, target);
sum++;
if(sum==m)
cout << "Move disk " << n << " from " << source << " to " << target << endl;
hanoi(n - 1, auxiliary, target, source);
}
}
int main() {
int n;
cin >> n >> m;
hanoi(n, 'A', 'C', 'B');
cout << sum << endl;
return 0;
}
2、归并排序
具体思路:
1、分解:把原