【算法学习】分治法详解

一、介绍

1、分治法

具体操作是把原问题分为k个规模较小的子问题,对k个子问题分别求解,如果子问题的规模仍然不够小,则再划分为k个子问题。 如此递归地进行下去,直到问题规模足够小,很容易求出其解为止。

分治法的思想,几乎就是递归的过程。

2、 应用场景

平衡子问题:子问题的规模大致相同。

独立子问题:子问题之间相互独立。 

3、 解题步骤

1、分解:把问题分解成独立的子问题

2、解决:解决递归子问题

3、合并:把子问题的结果合并成原问题的解

二、具体应用

1、汉诺塔

问题描述:

有三根柱子 A、B 和 C ,以及一堆大小不同的盘子,这些盘子最初都叠放在柱子 A 上,按照从大到小的顺序。任务是将这堆盘子移动到柱子 C 上,同时保持每根柱子上的盘子顺序不变,即大盘子始终在小盘子下面

问:最少要移动多少次?

输入:输入两个正整数,一个是n(n <=15), 表示要移动的盘子数,一个是m,表示在最少移动步骤的第m步

解决思路:

1、将 n-1 个盘子从柱子 A 借助柱子 C 移动到柱子 B

2、将最大的盘子(第 n 个盘子)从柱子 A 移动到柱子 C

3、将 n-1 个盘子从柱子 B 借助柱子 A 移动到柱子 C

#include <iostream>
using namespace std;

int sum = 0,m;
// 递归函数来解决汉诺塔问题
void hanoi(int n, char source, char target, char auxiliary) {
    if (n == 1) {
        sum++;
        if(sum==m)
            cout << "Move disk 1 from " << source << " to " << target << endl;
    }
    else{
        hanoi(n - 1, source, auxiliary, target);
        sum++;
        if(sum==m)
            cout << "Move disk " << n << " from " << source << " to " << target << endl;
        hanoi(n - 1, auxiliary, target, source);
    }
}

int main() {
    int n;
    cin >> n >> m;
    hanoi(n, 'A', 'C', 'B'); 
    cout << sum << endl;
    return 0;
}

2、归并排序 

具体思路:

1、分解:把原

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值