【算法模板】动态规划:状压DP

状压DP(又称“状态压缩动态规划”)是一种动态规划的变体,广泛应用于涉及状态压缩问题的场景,比如图的状态、子集问题等。它通过压缩状态表示来降低复杂度,从而使得解决问题的方式更加高效。

算法思想

状压DP的核心思想是使用一个位掩码(bitmask)来表示某些特定的状态。位掩码可以有效地表示集合的子集,尤其适合处理相对较小数量(通常不超过20个)的元素。

算法流程

  • 状态表示:使用一个整数的二进制表示来表示状态。例如,若有N个元素,考虑一个不超过N的子集,则可以用一个N位的二进制数表示,位为1表示在集合中,位为0表示不在集合中。

  • 状态转移:定义状态转移方程,通过对当前状态进行某种操作(比如加入新的元素或者移除元素)来得到新的状态。

  • 初始化:在算法的开始阶段初始化DP数组,通常第一个状态是空集。

  • 遍历所有状态:使用循环遍历所有可能的状态,计算每个状态的最佳解。

  • 输出结果:最后可以从DP数组中获取最终解。

例题

#2153. 「SCOI2005」互不侵犯)

在 N*N 的棋盘里面放 K 个国王,使他们互不攻击,共有多少种摆放方案。

国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 8个格子。

#include<bits/stdc++.h>
using namespace std;

// 检查当前行的状态与前一行的状态是否兼容
bool isValid(int prevMask, int currMask, int N){
    for (int i = 0; i < N; ++i){
        if ((currMask & (1 << i)) != 0){ // 当前行的第 i 列有国王
            // 检查前一行的第 i 列、第 i-1 列和第 i+1 列是否有国王
            if ((prevMask & (1 << i)) != 0 ||
                (i > 0 && (prevMask & (1 << (i - 1))) != 0) ||
                (i < N - 1 && (prevMask & (1 << (i + 1))) != 0)){
                return false;
            }
            // 检查当前行的第 i-1 列和第 i+1 列是否有国王
            if ((i > 0 && (currMask & (1 << (i - 1))) != 0) ||
                (i < N - 1 && (currMask & (1 << (i + 1))) != 0)){
                return false;
            }
        }
    }
    return true;
}

long long countKingPlacements(int N, int K){
    vector<vector<vector<long long>>> dp(N + 1, vector<vector<long long>>(1 << N, vector<long long>(K + 1, 0)));
    dp[0][0][0] = 1; // 初始状态:第 0 行,无国王,已放置 0 个国王

    // 逐行计算
    for (int row = 1; row <= N; ++row){
        for (int prevMask = 0; prevMask < (1 << N); ++prevMask){
            for (int k = 0; k <= K; ++k){
                if (dp[row - 1][prevMask][k] <= 0) continue;
                for (int currMask = 0; currMask < (1 << N); ++currMask){
                    if (!isValid(prevMask, currMask, N)) continue;
                    int newKings = __builtin_popcount(currMask); // 计算当前行的国王数量
                    if (k + newKings <= K){
                        dp[row][currMask][k + newKings] += dp[row - 1][prevMask][k];
                    }
                }
            }
        }
    }

    long long result = 0;
    for (int mask = 0; mask < (1 << N); ++mask){
        result += dp[N][mask][K];
    }
    return result;
}

int main(){
    int N, K;
    cin >> N >> K;
    cout << countKingPlacements(N, K) << endl;
    return 0;
}

交通管控 - HDU 7498

在H市中心,由于交通拥堵,手动调整信号灯。每个操作杆影响k个信号灯,功能用长度为k的字符串表示,包括“+”表示顺时针变化、“-”表示逆时针变化以及“0”表示无影响。任务是从n个操作杆中选择任意组合,统计所有可能的信号灯组合,并计算每种组合的实现方式的数量,结果需对模数M取模。输入包括测试组数T,操作杆数n,信号灯数k及模数M,以及每个操作杆的功能字符串。输出要求按字典序列出所有信号灯组合及其对应的操作杆使用方法数。

#include <bits/stdc++.h>
using namespace std;
#define int long long

int Hash(vector<int> &v) {
    int val = 0;
    for (int i : v) val = val * 3 + i;
    return val;
}

vector<int> inHash(int val, int k) {
    vector<int> v(k);
    for (int i = 0; i < k; i++) v[k - i - 1] = val % 3, val /= 3;
    return v;
}

void add(vector<int> &res, string &s, bool flag = true) {
    const int n = s.size();
    for (int i = 0; i < n; i++) {
        if (s[i] == '0') continue;
        if (flag)
            res[i] += s[i] == '+' ? 1 : 2;
        else
            res[i] += s[i] == '+' ? 2 : 1;
    }
    for (int &i : res) i %= 3;
}

void print(vector<int> res) {
    const int n = res.size();
    for (int i : res) cout << (char)('A' + i);
    cout << ' ';
}

signed main() {
    int task;
    cin >> task;
    while (task--) {
        int n, k, mod;
        cin >> n >> k >> mod;
        vector<string> vs(n);
        for (string &s : vs) cin >> s;

        int len = pow(3, k);
        vector<array<int, 2>> dp(len);
        vector<array<int, 2>> vis(len);
        bool f = true;
        vis[0][f] = true;
        dp[0][f] = 1;
        for (string s : vs) {
            for (int i = 0; i < len; i++) 
                dp[i][f ^ 1] = vis[i][f ^ 1] = 0;
            for (int i = 0; i < len; i++) {
                if (vis[i][f] == false) continue;
                dp[i][f ^ 1] = (dp[i][f ^ 1] + dp[i][f]) % mod;
                vector<int> v = inHash(i, k);
                add(v, s);
                int x = Hash(v);
                dp[x][f ^ 1] = (dp[x][f ^ 1] + dp[i][f]) % mod;
                vis[i][f^1]=vis[x][f^1] = true;
            }
            f ^= 1;
        }

        for (int i = 0; i < len; i++) {
            if (!vis[i][f]) continue;
            vector<int> v = inHash(i, k);
            print(v);
            cout << dp[i][f] << endl;
        }
    }
    return 0;
}
<think>嗯,用户想了解用Python中的动态规划DP)解决旅行商问题(TSP)的详细方法。首先,我需要回忆一下TSP的基本概念。TSP是要找到一条最短的路径,让旅行商访问所有城市并回到起点,每个城市只访问一次。这属于NP难问题,所以需要高效的算法来处理,尤其是当城市数量较多时。 DP通常用于处理态中包含集合的情况,比如访问过的城市集合。因为用二进制位来表示集合可以节省空间,例如,n个城市可以用n位的二进制数表示,每一位代表是否访问过该城市。这样的话,态可以表示为当前所在城市和已经访问过的城市集合。 接下来,我得考虑动态规划态定义。通常,dp[mask][i]表示当前已经访问过的城市集合为mask,并且最后停留在城市i时的最短路径长度。初始态应该是只访问了一个城市的情况,比如dp[1 << i][i] = 0,因为从城市i出发,还没有移动,所以距离为0。不过根据用户提供的引用[1],初始化每个景点j在只访问自己的态下的公交次数为0,即dp[j][1 << j] = 0。这里的公交次数可能对应路径长度,所以类似。 然后态转移方程应该是:对于每一个态mask和当前城市i,遍历所有未访问过的城市j,更新dp[mask | (1 << j)][j] = min(dp[mask | (1 << j)][j], dp[mask][i] + dist[i][j])。也就是说,从i到j,将j加入已访问集合,并更新最短路径。 接下来要考虑Python的实现。由于Python对于位运算的支持还不错,可以用字典或者二维数组来存储dp。不过考虑到空间问题,如果城市数量n较大,二维数组可能会占用太多内存。但TSP通常处理的是n较小的情况(比如n=15左右),所以可能还是可行的。 需要处理的问题包括如何遍历所有可能的mask,以及如何高效地进行态转移。另外,要注意mask的位数,比如n个城市,mask的范围是0到2^n -1。对于每个mask,需要检查哪些城市已经被访问过,然后找到下一个未访问的城市。 还需要给出具体的代码示例。比如,初始化一个二维数组dp,大小为(2^n, n),初始化为无穷大,然后设置初始态,接着遍历所有mask,对于每个mask中的当前城市i,找到未访问的城市j,进行态转移。 另外,用户提供的引用[2]提到了分支限界法使用优先队列来减少搜索空间,可能和这里的DP不同,但可以提一下其他方法作为对比。引用[3]中的回溯法框架可能也相关,但DP更高效。 最后,需要考虑路径的起点和终点是否需要回到起点。在TSP中,通常要求回到起点,所以在计算完所有城市被访问的态后,还需要加上从最后一个城市回到起点的距离。或者,在代码实现中,最后一步需要处理这一步。 举个例子,假设有4个城市,距离矩阵给出各个城市之间的距离。初始化时,dp[0001][0] = 0,dp[0010][1] = 0,依此类推。然后对于每个mask,比如0001,当前城市0,那么遍历其他城市1、2、3,将mask更新为0011、0101、1001,对应的dp值加上距离。 在Python中,可以用一个二维列表来存储dp,例如dp = [[inf] * n for _ in range(1 << n)]。然后循环mask从1到(1 << n) -1,对于每个mask,检查每一位是否为1,找到当前城市i,然后遍历所有可能的j不在mask中的情况。 最后,得到所有城市都被访问过的mask(全1),然后找出最小的dp值,再加上从最后城市回到起点的距离,或者如果在态转移中已经考虑了回到起点的情况,那就可以直接取最小值。 可能的错误点:初始化是否正确,mask的遍历顺序是否正确(应该从小到大),以及如何处理最后回到起点的问题。需要仔细检查这些步骤。 然后,编写代码示例,包括距离矩阵的定义,dp数组的初始化,态转移的循环,以及最后结果的提取。同时,可能需要测试一个简单案例,比如3个城市,手动计算验证是否正确。 此外,用户可能需要了解时间复杂度和空间复杂度,以及优化方法,比如使用位运算加速,或者空间优化(例如使用滚动数组),但可能对于Python来说,空间优化不太容易,因为n超过20的话,2^20已经是百万级别,可能会占用较大内存。 总结来说,步骤是:问题分析,态定义,转移方程,初始化,遍历顺序,代码实现,结果处理,复杂度分析,以及可能的优化。</think>### PythonDP解决旅行商问题(TSP)详解 #### 1. 问题分析 旅行商问题(TSP)要求在$n$个城市中找到一条最短环路,访问每个城市恰好一次并返回起点。动态规划通过二进制表示已访问城市集合,将时间复杂度优化到$O(n^2 \cdot 2^n)$[^2]。 #### 2. 态定义 定义二维数组$dp[mask][i]$: - $mask$:二进制数,第$j$位为1表示已访问城市$j$ - $i$:当前所在城市 - 值:从起点出发,经过$mask$对应城市后到达$i$的最小路径长度 #### 3. 态转移方程 $$dp[mask | (1 << j)][j] = \min\left(dp[mask | (1 << j)][j],\ dp[mask][i] + dist[i][j]\right)$$ 其中$j$是未访问城市(即$mask$的第$j$位为0) #### 4. 实现步骤 ```python import sys def tsp(dist): n = len(dist) total_mask = 1 << n INF = sys.maxsize # 初始化dp表:dp[mask][i] dp = [[INF] * n for _ in range(total_mask)] for i in range(n): dp[1 << i][i] = 0 # 初始态:只访问过城市i # 遍历所有态 for mask in range(total_mask): for i in range(n): if not (mask & (1 << i)): # 当前城市必须已访问 continue for j in range(n): if mask & (1 << j): # 目标城市必须未访问 continue new_mask = mask | (1 << j) dp[new_mask][j] = min(dp[new_mask][j], dp[mask][i] + dist[i][j]) # 最终结果需返回起点(假设起点是0) final_mask = (1 << n) - 1 return min(dp[final_mask][i] + dist[i][0] for i in range(n)) # 示例距离矩阵(4个城市) dist = [ [0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0] ] print(tsp(dist)) # 输出:80 (0->1->3->2->0) ``` #### 5. 关键点说明 1. **态初始化**:每个城市作为起点时路径长度为0[^1] 2. **掩码遍历顺序**:从小到大确保态依赖已计算 3. **路径闭合处理**:最终结果需加上返回起点的距离 4. **空间优化**:可使用滚动数组减少内存占用 #### 6. 复杂度分析 - 时间复杂度:$O(n^2 \cdot 2^n)$ - 空间复杂度:$O(n \cdot 2^n)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值